ON PSEUDO $B H$-ALGEBRAS

Young Bae Jun and Sun Shin Ahn*

Abstract

As a generalization of $B H$-algebras, the notion of pseudo $B H$-algebra is introduced, and some of their properties are investigated. The notions of pseudo ideals, pseudo atoms, pseudo strong ideals, and pseudo homomorphisms in pseudo BH -algebras are introduced. Characterizations of their properties are provided. We show that every pseudo homomorphic image and preimage of a pseudo ideal is also a pseudo ideal. Any pseudo ideal of a pseudo $B H$-algebra can be decomposed into the union of some sets. The notion of pseudo complicated $B H$-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ($[3,4]$). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. $B C K$-algebras have several connections with other areas of investigation, such as: lattice ordered groups, $M V$-algebras, Wajsberg algebras, and implicative commutative semigroups. J. M. Font et al. [1] have discussed Wajsberg algebras which are term-equivalent to $M V$-algebras. D. Mundici [9] proved $M V$-algebras are categorically equivalent to bounded commutative $B C K$-algebra, and J. Meng [8] proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [7] introduced the notion of a BH algebra, which is a generalization of $B C K / B C I$-algebras. E. H. Roh and S. Y. Kim [11] estimated the number of $B H^{*}$-subalgebras of order i in a transitive $B H^{*}$-algebras by using Hao's method. G. Georgescu and A. Iorgulescu [2] introduced the notion of a pseudo $B C K$-algebra.

[^0]Y. B. Jun characterized pseudo $B C K$-algebras. He found conditions for a pseudo $B C K$-algebra to be \wedge-semi-lattice ordered. Y. B. Jun, H.S. Kim, J. Neggers [5] introduced the notion of a pseudo d-algebra as a generalization of the idea of a d-algebra.

In this paper, we introduce the notion of pseudo $B H$-algebra as a generalization of BH -algebra and investigate some of their properties. We also define the notions of pseudo ideals, pseudo atoms, pseudo strong ideals, and pseudo homomorphisms in pseudo $B H$-algebras and provide characterizations of their properties in pseudo $B H$-algebras. We show that every pseudo homomorphic image and preimage of a pseudo ideal is also a pseudo ideal. Any pseudo ideal of a pseudo BH -algebra can be decomposed into the union of some sets. We introduced the notion of pseudo complicated BH -algebra and obtain some related properties.

2. Preliminaries

By a $B H$-algebra $([7])$, we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$, for all $x, y \in X$.

For brevity, we also call X a $B H$-algebra. In X we can define a binary operation " $\leq "$ by $x \leq y$ if and only if $x * y=0$. A non-empty subset S of a $B H$-algebra X is called a subalgebra of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1([7]). A non-empty subset A of a $B H$-algebra X is called an ideal of X if it satisfies:
(I1) $0 \in A$,
(I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.
An ideal A of a $B H$-algebra X is said to be a translation ideal of X if it satisfies:
(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) *(y * z) \in A$ and $(z * x) *(z * y) \in$ $A, \forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. We will call $\{0\}$ and X a trivial ideal and a improper ideal, respectively. An ideal A is said to be proper if $A \neq X$.

Definition 2.2([11]). A $B H$-algebra X is called a $B H^{*}$-algebra if it satisfies the identity $(x * y) * x=0$ for all $x, y \in X$.

Example 2.3([7]). Let $X:=\{0, a, b, c\}$ be a $B H$-algebra which is not a $B C K$-algebra with the following Cayley table:

$*$	0	1	2	3
0	0	1	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $A:=\{0,1\}$ is a translation ideal of X.
Definition 2.4. A non-empty subset A of a $B H$-algebra X is called a strong ideal of X if it satisfies (I1) and
(I4) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A, \forall x, y \in X$.
Example 2.5. (1) Let $X:=\{0,1,2,3,4,5\}$ be a set with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Then X is a $B H$-algebra which is not a $B C K / B C I$-algebra, since $(4 *$ $(4 * 5)) * 5=(4 * 1) * 5=4 * 5=1 \neq 0$. Let $S:=\{0,1,2,3,4\}$. It is easy to see that S is a subalgebra and a strong ideal of X.
(2) Let $X:=\{0,1,2,3,4\}$ be a set with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	4
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Then X is a $B H$-algebra, which is not a $B C K / B C I$-algebra, since $((4 *$ $2) *(4 * 3)) *(3 * 2)=(4 * 3) * 1=3 * 1=3 \neq 0$. Let $A:=\{0,1,2,3\}$. Then A is a subalgebra, not an ideal, and not a strong ideal of X, since $4 * 3=3 \in A$, but $4 \notin A$. Let $B:=\{0,1\}$. It is easy to show that
B is a subalgebra, an ideal of X, and not a strong ideal of X, since $(4 * 1) * 2=3 * 2=1 \in B$, but $4 * 2=4 \notin B$.

3. Pseudo $B H$-algebras

Definition 3.1. A pseudo $B H$-algebra is a non-empty set X with a constant 0 and two binary operations " $*$ " and " \diamond " satisfying the following axioms:
(P1) $x * x=x \diamond x=0$;
(P2) $x * 0=x \diamond 0=x$;
(P3) $x * y=y \diamond x=0$ imply $x=y$ for all $x, y \in X$.
For brevity, we also call X a pseudo $B H$-algebra. In X we can define a binary operation " \preceq " by $x \preceq y$ if and only if $x * y=0$ if and only if $x \diamond y=0$. Note that if $(X ; *, 0)$ is a $B H$-algebra, then letting $x \diamond y:=x * y$, produces a pseudo $B H$-algebra $(X ; *, \diamond, 0)$. Hence every $B H$-algebra is a pseudo $B H$-algebra in a natural way.

Definition 3.2. Let $(X ; *, \diamond, 0)$ be a pseudo $B H$-algebra and let $\emptyset \neq$ $I \subseteq X . I$ is called a pseudo subalgebra of X if $x * y, x \diamond y \in I$ whenever $x, y \in I . I$ is called a pseudo ideal of X if it satisfies
(PI1) $0 \in I$;
(PI2) $x * y, x \diamond y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.
Example 3.3. (1) Let $X:=\{0, a, b, c\}$ be a set with the following Cayley tables:

$*$	0	a	b	c	\diamond	0	a	b	c
0	0	0	0	c	0	0	0	0	c
a	a	0	0	0	a	a	0	a	c
b	b	0	0	b	b	b	a	0	0
c	c	0	c	0	c	c	c	0	0

Then it is easy to show that $(X ; *, 0)$ and $(X ; \diamond, 0)$ are not $B H$-algebras, but $(X ; *, \diamond, 0)$ is a pseudo $B H$-algebra. Let $I:=\{0, a\}$. Then I is a pseudo subalgebra of X, but not a pseudo ideal of X since $b * a=$ $0, b \diamond a=a$, and $0, a \in I$, but $b \notin I$.
(2) Let $X:=\{0, a, b, c\}$ be a set with the following Cayley tables:

$*$	0	a	b	c
0	0	0	0	c
a	a	0	0	0
b	b	b	0	b
c	c	0	a	0

\diamond	0	a	b	c
0	0	0	0	c
a	a	0	0	c
b	b	b	0	0
c	c	c	0	0

Then it is easy to show that $(X ; *, 0)$ and $(X ; \diamond, 0)$ are not $B H$-algebras, but $(X ; *, \diamond, 0)$ is a pseudo $B H$-algebra. If we let $J:=\{0, a, c\}$, then it is both a pseudo subalgebra of X and a pseudo ideal of X.
Proposition 3.4. Let I be a pseudo ideal of a pseudo $B H$-algebra X. If $x \in I$ and $y \preceq x$, then $y \in I$.
Proof. Assume that $x \in I$ and $y \preceq x$. Then $y * x=0$ and $y \diamond x=0$. By (PI1) and (PI2), we have $y \in I$.

Definition 3.5. A pseudo $B H$-algebra $(X ; *, 0)$ is called a pseudo $B H^{*}$ algebra if it satisfies the identities $(x * y) \diamond x=0$ and $(x \diamond y) * x=0$ for all $x, y \in X$.

Theorem 3.6. For any element of a pseudo $B H^{*}$-algebra X, the initial section $\downarrow a:=\{x \in X \mid x \preceq a\}$ is a pseudo ideal of X if and only if the following implications hold:
(i) $\forall x, y, z \in X, x * y \preceq z, y \preceq z \Longrightarrow x \preceq z$.
(ii) $\forall x, y, z \in X, x \diamond y \preceq z, y \preceq z \Longrightarrow x \preceq z$.

Proof. Assume that for each $a \in X, \downarrow a$ is a pseudo ideal of X. Let $x, y, z \in X$ be such that $x * y \preceq z, x \diamond y \preceq z$ and $y \preceq z$. Then $x * y \in \downarrow$ $z, x \diamond y \in \downarrow z$ and $y \in \downarrow z$. Since $\downarrow z$ is a pseudo ideal of X, it follows from (PI2) that $x \in \downarrow z$, i.e., $x \preceq z$.

Conversely, consider $\downarrow z$ for any $z \in X$. Obviously, $0 \in \downarrow z$. For every $y \in \downarrow z$, let $a * y \preceq z, a \diamond y \preceq z$. Then $a * y \in \downarrow z$ and $a \diamond y \in \downarrow z$. Since $y \in \downarrow z$, it follows from hypothesis that $a \preceq z$, i.e., $a \in \downarrow z$. Hence $\downarrow z$ is a pseudo ideal of X for every $z \in X$.

Proposition 3.7. If J is a pseudo ideal of a pseudo $B H$-algebra X, then
(i) $\forall x, y, z \in X, x, y \in J, z * y \preceq x \Longrightarrow z \in J$.
(ii) $\forall a, b, c \in X, a, b \in J, c \diamond b \preceq a \Longrightarrow c \in J$.

Proof. Suppose that J is a pseudo ideal of X and let $x, y, z \in X$ be such that $x, y \in J$ and $z * y \preceq x$. Then $(z * y) \diamond x=0 \in J$. Since $x \in J$ and J is a pseudo ideal of X, we have $z * y \in J$. Since $y \in J$ and J is a pseudo ideal of X, we obtain $z \in J$. Thus (i) is valid.

Now let $a, b, c \in X$ be such that $a, b \in J$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a=0 \in J$ and so $c \diamond b \in J$. Since $b \in J$ and J is a pseudo ideal of X, we have $c \in J$. Thus (ii) is true.
Theorem 3.8 Let I be a non-empty subset of a pseudo $B H^{*}$-algebra X. Then I is a pseudo ideal of X if and only if for all $x, y \in I$ and $z \in X, z \diamond x \preceq y, z * x \preceq y$ imply $z \in I$.
Proof. Suppose that I is a pseudo ideal of X and $z \diamond x \preceq y, z * x \preceq y$ for all $x, y \in I$ and $z \in X$. It follows from Proposition 3.4 that $z \diamond x \in I$ and $z * x \in I$. Using (PI2), we have $z \in I$.

Conversely, let $x \in I$, since $0 \diamond x \preceq x$ and $0 * x \preceq x$, we have $0 \in I$. Let $x * y, x \diamond y \in I$ and $y \in I$. Since $x \diamond y \preceq x \diamond y$ and $x * y \preceq x * y$, we have $x \in I$. Thus I is a pseudo ideal of X.
Proposition 3.9. For any pseudo $B H^{*}$-algebra X, the set

$$
K(X):=\{x \in X \mid 0 \preceq x\}
$$

is a pseudo subalgebra of X.
Proof. Let $x, y \in K(X)$. Then $0 \preceq x$ and $0 \preceq y$. Hence $0=0 * y \preceq x * y$ and $0=0 \diamond y \preceq x \diamond y$ so that $x * y, x \diamond y \in K(X)$. Thus $K(X)$ is a pseudo subalgebra of X.
Example 3.10. In Example $3.3(2), K(X)=\{0, a, b\}$ is a pseudo subalgebra of X, but not a pseudo ideal of X since $c \diamond b=0, c * b=a$, and $b \in K(X)$, but $c \notin K(X)$.

Proposition 3.11. Let A be a pseudo ideal of a pseudo $B H$-algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.
Proof. Since B is a pseudo ideal of A, we have $0 \in B$. Let $y, x * y, x \diamond y \in B$ for some $x \in X$. If $x \in A$, then $x \in B$, since B is a pseudo ideal of A. If $x \in X-A$, then $y, x * y, x \diamond y \in B \subseteq A$ and so $x \in A$ because A is a pseudo ideal of X. Thus $x \in B$ since B is a pseudo ideal of A. This competes the proof.
Definition 3.12. An element w of a pseudo $B H$-algebra X is called a pseudo atom if for every $x \in X, x \preceq w$ implies $x=w$.

Obviously, 0 is a pseudo atom of X.
Proposition 3.13. Let X be a pseudo $B H$-algebra. If an element w of X satisfies the identity $y *(y \diamond(w * x))=w * x$ for all $x, y \in X$, then w is a pseudo atom of X.

Proof. Let $y \in X$ be such that $y \preceq w$. Then $w=w * 0=y *(y \diamond(w * 0))=$ $y *(y \diamond w)=y * 0=y$. Hence w is a pseudo atom of X.

Lemma 3.14. A non-zero element $a \in X$ is a pseudo atom of X if $\{0, a\}$ is a pseudo ideal of X.
Proof. Straightforward.
Lemma 3.15. If every non-zero element of a $B H^{*}$-algebra X is a pseudo atom, then any pseudo subalgebra of X is a pseudo ideal of X.
Proof. Let S be a pseudo subalgebra of X and let $x, y * x, y \diamond x \in S$. Since $y * x \preceq y$ and $y \diamond x \preceq y$ for all $x, y \in X$ and y is an atom of Y, we have $y * x=y, y \diamond x=y \in S$. Thus S is a pseudo ideal of X.

From above Lemmas we obtain the following Theorem.
Theorem 3.16. A $B H^{*}$-algebra contains only pseudo atoms if and only if its pseudo subalgebra is a pseudo ideal.

Definition 3.17. A non-empty subset A of a pseudo $B H$-algebra X is called a pseudo strong ideal of X if it satisfies (PI1) and
(PI3) $(x * y) \diamond z, y \in A$ imply $x * z \in A$;
$\left(\mathrm{PI}^{\prime}\right)(x \diamond y) * z, y \in A$ imply $x \diamond z \in A$ for all $x, y, z \in X$.
Note that if X is a pseudo $B H$-algebra satisfying $x * y=x \diamond y$ for all $x, y \in X$, then the notions of a pseudo strong ideal and a strong ideal coincide.

Proposition 3.18. In a pseudo $B H$-algebra, any pseudo strong ideal is a pseudo ideal.

Proof. Putting $z:=0$ in (PI3) and (PI^{\prime}), we have $x * y, x \diamond y, y \in A$ imply $x \in A$.

Proposition 3.19. In a $B H^{*}$-algebra X, any pseudo ideal is a pseudo subalgebra.

Proof. Let A be a pseudo ideal of X. Then $0 \in A$ and $(x * y) \diamond x=$ $(x \diamond y) * x=0$ for any $x, y \in X$. Then for any $x \in A$, we have $(x * y) \diamond$ $x,(x \diamond y) * x \in A$, which implies $x * y, x \diamond y \in A$.
Corollary 3.20. Any pseudo strong ideal of $B H^{*}$-algebra is a pseudo subalgebra.
Example 3.21. In Example $3.3(2), J:=\{0, a, c\}$ is a pseudo ideal of X but not a pseudo strong ideal of X, since $(b * a) \diamond c=b \diamond c=0$, and $(b \diamond c) * a=0 * a=0, a \in J$, but $b * c=b, b \diamond a=b \notin J$.

We provide conditions for a pseudo subalgebra to be a pseudo strong ideal.

Proposition 3.22. Let X be a pseudo $B H$-algebra. Then a pseudo subalgebra of X is a pseudo strong ideal of X if and only if $\forall x, y, z \in$ $X, x \in A, y * z, y \diamond z \in X-A$ imply $(y * x) \diamond z,(y \diamond x) * z \in X-A$.
Proof. Assume that a pseudo subalgebra A of X is a pseudo strong ideal of X and let $x, y, z \in X$ be such that $x \in A$ and $y * z, y \diamond z \in X-A$. If $(y * x) \diamond z \notin X-A$, then $(y * x) \diamond z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y * z \in J$. This is a contradiction. If $(y \diamond x) * z \notin X-A$, then $(y \diamond x) * z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y \diamond z \in A$. This is a contradiction.

Conversely, assume that $\forall x, y, z \in X, x \in A, y * z, y \diamond z \in A$ imply $(y * x) \diamond z,(y \diamond x) * z \in X-A$. Since A is a pseudo subalgebra of X, we have $0 \in A$. For every $x \in A$, let $(y * x) \diamond z,(y \diamond x) * z \in A$. If $y * z \notin A$ or $y \diamond z \notin A$, then $(y * x) \diamond z$ or $(y \diamond x) * z \in X-A$ by assumption. This is a contradiction. Hence $y * z \in A$ and $y \diamond z \in A$. Thus A is a pseudo strong ideal of X.

Putting $z:=0$ in Proposition 3.22, we have the following Corollary.
Corollary 3.23. Let A be a pseudo subalgebra of a pseudo $B H$-algebra X. Then A is a pseudo ideal of X if and only if $\forall x, y \in X, x \in A, y \in$ $X-A$ imply $y * x, y \diamond x \in X-A$.

Definition 3.24. Let X and Y be a pseudo $B H$-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism of pseudo $B H$-algebras if $f(x * y)=$ $f(x) * f(y)$ and $f(x \diamond y)=f(x) \diamond f(y)$ for all $x, y \in X$.

Note that if $f: X \rightarrow Y$ is a homomorphism of pseudo $B H$-algebras, then $f\left(0_{X}\right)=0_{Y}$ where 0_{X} and 0_{Y} are zero elements of X and Y, respectively.
Theorem 3.25. Let $f: X \rightarrow Y$ be a homomorphism of pseudo $B H$ algebras. If B is a pseudo strong ideal of Y, then $f^{-1}(B)$ is a pseudo strong ideal of X.
Proof. Assume that B is a pseudo strong ideal of Y. Obviously, $0_{X} \in$ $f^{-1}(B)$. Let $x, y, z \in X$ be such that $(x * y) \diamond z,(x \diamond y) * z, y \in f^{-1}(B)$. Then $(f(x) * f(y)) \diamond f(z)=f((x * y) \diamond z), f(y) \in B$. Sine B is a pseudo strong ideal of Y, it follows from (PI3) and (PI3') that $f(x * z)=f(x) *$ $f(z), f(x \diamond z)=f(x) \diamond f(z) \in B$ so that $x * z, x \diamond z \in f^{-1}(B)$. Hence $f^{-1}(B)$ is a pseudo strong ideal of X.

Theorem 3.26. Let $f: X \rightarrow Y$ be a homomorphism of pseudo BH algebras.
(i) If B is a pseudo ideal of Y, then $f^{-1}(B)$ is a pseudo ideal of X.
(ii) If f is surjective and I is a pseudo ideal of X, then $f(I)$ is a pseudo ideal of Y.

Proof. (i) Straightforward.
(ii) Assume that f is surjective and let I be a pseudo ideal of X. Obviously, $0_{Y} \in f(I)$. For every $y \in f(I)$, let $a, b \in Y$ be such that $a * y \in f(I), b \diamond y \in f(I)$. Then there exist $x_{*}, x_{\diamond} \in I$ such that $f\left(x_{*}\right)=a * y$ and $f\left(x_{\diamond}\right)=b \diamond y$. Since $y \in f(I)$, there exists $x_{y} \in I$ such that $f\left(x_{y}\right)=y$. Also f is surjective, there exist $x_{a}, x_{b} \in X$ such that $f\left(x_{a}\right)=a$ and $f\left(x_{b}\right)=b$. Hence $f\left(x_{a} * x_{y}\right)=f\left(x_{a}\right) * f\left(x_{y}\right)=a * y \in f(I)$ and $f\left(x_{b} \diamond x_{y}\right)=f\left(x_{b}\right) \diamond f\left(x_{y}\right)=b \diamond y \in f(I)$, which imply that $x_{a} * x_{y} \in I$ and $x_{b} * x_{y} \in I$. Since I is a pseudo ideal of X, we get $x_{a}, x_{b} \in I$ and thus $a=f\left(x_{a}\right), b=f\left(x_{b}\right) \in f(I)$. Therefore $f(I)$ is a pseudo ideal of X

Corollary 3.27. Let $f: X \rightarrow Y$ be a homomorphism of pseudo $B H$-algebras. Then $\operatorname{Ker} f:=\{x \in X \mid f(x)=0\}$ is a pseudo strong ideal(ideal) of X.

Proof. Straightforward.
Proposition 3.28. Let $f:\left(X ; *_{1}, \diamond_{1}, 0\right) \rightarrow\left(Y ; *_{2}, \diamond_{2}, 0\right)$ be a homomorphism of pseudo $B H$-algebras. Then $x *_{1} y, y \diamond_{1} x \in \operatorname{Kerf}$ if and only if $f(x)=f(y), \forall x \in X$.
Proof. If $x *_{1} y, y \diamond_{1} x \in \operatorname{Kerf}$, then $f(x) *_{2} f(y)=f\left(x *_{1} y\right)=0$ and $f(y) \diamond_{2} f(x)=f\left(y \diamond_{1} x\right)=0$. Using (P3), we have $f(x)=f(y)$.

Conversely, assume that $f(x)=f(y), \forall x \in X$. Then $f(x) *_{2} f(y)=$ $f\left(x *_{1} y\right)=0$ and $f(x) \diamond_{2} f(y)=f\left(x \diamond_{1} y\right)=0$. Hence $x *_{1} y, y \diamond_{1} x \in$ Kerf.

Proposition 3.29. Let $f:\left(X ; *_{1}, \diamond_{1}, 0\right) \rightarrow\left(Y ; *_{2}, \diamond_{2}, 0\right)$ be a homomorphism of pseudo $B H$-algebras. If $y \in \operatorname{Kerf}$, then $x *_{1}\left(x *_{1} y\right),\left(x_{1} * y\right) *_{1}$ $x, x \diamond_{1}\left(x *_{1} y\right),\left(x_{1} * y\right) \diamond_{1} x, x *_{1}\left(x \diamond_{1} y\right),\left(x_{1} * y\right) *_{1} x, x \diamond_{1}\left(x \diamond_{1} y\right),\left(x_{1} \diamond_{1} y\right) \diamond_{1} x \in$ Kerf.

Proof. Straightforward.
Lemma 3.30. Let $f: X \rightarrow Y$ be a homomorphism of pseudo $B H$ algebras. Then f is a monomorphism if and only if $\operatorname{Ker} f=\{0\}$.
Proof. Straightforward.
The following theorems are easy to prove, and we omit the proofs.
Theorem 3.31. Let X, Y and Z be pseudo $B H$-algebras, and $h: X \rightarrow$ Y be an onto homomorphism of pseudo $B H$-algebras and $g: X \rightarrow Z$
be a homomorphism of pseudo BH -algebras. If Kerh \subseteq Kerg, then there exists a unique homomorphism of pseudo $B H$-algebras $f: Y \rightarrow Z$ satisfying $f \circ h=g$.
Theorem 3.32. Let X, Y and Z be pseudo $B H$-algebras, and $g: X \rightarrow$ Z be a homomorphism of pseudo $B H$-algebras and $h: Y \rightarrow Z$ be an one-to-one homomorphism of pseudo $B H$-algebras. If Img $\subseteq I m h$, then there exists a unique homomorphism of pseudo $B H$-algebras $f: X \rightarrow Y$ satisfying $h \circ f=g$.

Note that the standard projections from their direct product or sum of pseudo BH -algebras to their components are homomorphism of pseudo BH -algebras with kernels having the usual form.

4. Pseudo Complicated BH -algebras

Let X be a pseudo $B H$-algebra. For any $a, b \in X$, we denote

$$
A(a, b):=\{x \in X \mid(x * a) \diamond b=0\} .
$$

Theorem 4.1. If I is a pseudo ideal of a pseudo $B H$-algebra X, then $I=\cup_{a, b \in I} A(a, b)$.
Proof. Let I be a pseudo ideal of a pseudo $B H$-algebra X. If $a \in I$, then $(a * a) \diamond 0=0 \diamond 0=0$. Hence $a \in A(a, 0)$. It follows that

$$
I \subseteq \cup_{a \in I} A(a, 0) \subseteq \cup_{a, b \in I} A(a, b)
$$

Let $x \in \cup_{a, b \in I} A(a, b)$. Then there exist $a, b \in I$ such that $x \in A(a, b)$ so that $(x * a) \diamond b=0 \in I$. Since I is a pseudo ideal of X, we have $x \in I$. Thus $\cup_{a, b \in I} A(a, b) \subseteq I$, and consequently $I=\cup_{a, b \in I} A(a, b)$,
Corollary 4.2. If I is a pseudo ideal of a pseudo $B H$-algebra X, then $I=\cup_{a \in I} A(a, 0)$.
Proof. By Theorem 4.1, we have

$$
\cup_{a \in I} A(a, 0) \subseteq \cup_{a, b \in I} A(a, b) \subseteq I .
$$

If $a \in I$, then $a \in A(a, 0)$, since $(a * a) \diamond 0=0 \diamond 0=0$. Hence $I \subseteq$ $\cup_{a \in I} A(a, 0)$. This completes the proof.
Example 4.3. Let $X:=\{0, a, b, c\}$ be as in Example 3.3(2). Set $J:=$ $\{0, a, c\}$. Then J is a pseudo ideal of X and $A(a, 0)=\{x \in X \mid(x * a) \diamond 0=$ $0\}=J$.
Theorem 4.4. Let I be a non-empty subset of a $B H$-algebra X such that $0 \in I$ and $I=\cup_{a, b \in I} A(a, b)$. Then I is a pseudo ideal of X.

Proof. Let $x * y, x \diamond y, y \in I=\cup_{a, b \in I} A(a, b)$. Since $(x * y) \diamond(x * y)=0$, we have $x \in A(y, x * y)$ and so $x \in I$. Hence I is a pseudo ideal of X.

Combining Theorems 4.1 and 4.4 , we have the following corollary.
Corollary 4.5. Let X be a pseudo $B H$-algebra. Then I is a pseudo ideal of X if and only if $I=\cup_{a, b \in I} A(a, b)$.

Note that $A(a, b)$ is not a pseudo ideal of X in general as seen in the following example.

Example 4.6. Let $X:=\{0, a, b, c\}$ be a set with the following Cayley tables:

$*$	0	a	b	c	$\stackrel{\rightharpoonup}{c}$	0	a	b	c
0	0	0	0	a	0	0	0	0	c
a	a	0	0	a	a	a	0	a	a
b	b	0	0	b	b	b	b	0	0
c	c	a	a	0	c	c	c	0	0

Then it is easy to show that $(X ; *, 0)$ and $(X ; \diamond, 0)$ are not $B H$-algebras, but $(X ; *, \diamond, 0)$ is a pseudo $B H$-algebra. Let $I:=\{0, a, b\}$. Then I is not a pseudo ideal of X since $c * b=a, c \diamond b=0 \in I$, and $a, 0 \in I$, but $c \notin I$. Also $A(a, 0)=\{x \in X \mid(x * a) \diamond 0=0\}=I$.

A pseudo ideal I of a pseudo $B H$-algebra X is said to be closed if $0 * x, 0 \diamond x \in I$ for any $x \in I$.

Proposition 4.7. Let X be a pseudo $B H^{*}$-algebra. Every pseudo ideal of X is closed.

Proof. Since $(0 * x) \diamond 0=0 * x=0$ and $(0 \diamond x) * 0=0 \diamond x=0$ for all $x \in X$, we have $0 * x=0$ and $0 \diamond x=0$.

Proposition 4.8. Let I be a subset of a pseudo $B H$-algebra X with the following conditions:
(i) $0 \in I$,
(ii) $x * z, x \diamond z, y * z, y \diamond z \in I$ and $z \in I$ imply $x * y, x \diamond y \in I$ for any $x, y, z \in X$.
Then I is a pseudo subalgebra(closed ideal) of X.
Proof. Let $x, y \in I$. By (P2), we have $x=x * 0=x \diamond 0=0$ and $y=y * 0=y \diamond 0$. It follows from (ii) that $x * y \in I$ and $x \diamond y \in I$. Hence I is a pseudo subalgebra of X.

Assume that I satisfies (i) and (ii). We claim that I is a pseudo closed ideal of X. Let $x * y, x \diamond y, y \in I$. Since $0 * 0=0 \diamond 0, y * 0=y \diamond 0$,
and $0 \in I$, it follows from (ii) that $0 * y, 0 \diamond y \in I$ which proves that I is closed. Since $x * y, x \diamond y, 0 * y, 0 \diamond y, y \in I$, by applying (ii) again, we obtain that $x=x * 0=x \diamond 0 \in I$, so that I is a pseudo ideal of X.

Definition 4.9. A pseudo $B H^{*}$-algebra X is said to be pseudo complicated if the following condition holds:
(PC) there exist, for all $a, b \in X$,

$$
a \odot b \stackrel{\text { notation }}{=} \max \{x \mid x * a \preceq b\}=\max \{x \mid x \diamond a \preceq b\} .
$$

Note that $A(a, b)$ is a non-empty, since $0, a, b \in A(a, b)$, where X is a pseudo $B H^{*}$-algebra.

Proposition 4.10. In a pseudo complicated $B H^{*}$-algebra, the following hold:
(i) $z \preceq x \odot y \Leftrightarrow z * x \preceq y \Leftrightarrow z \diamond x \preceq y$.
(ii) $a \preceq a \odot b$ and $b \preceq a \odot b$.
(iii) $a \odot 0=a=0 \odot a$.

Proof. Straightforward.
Theorem 4.11. Let A be a non-empty subset of a pseudo complicated $B H^{*}$-algebra X. If A is a pseudo ideal of X, then it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \preceq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A)(\exists z \in A)(x \preceq z, y \preceq z)$.

Proof. (i) Assume that A is a pseudo ideal of X. Let $x \in A, y \in X$ with $y \preceq x$. Then $y * x=y \diamond x=0$. Since A is a pseudo ideal of $X, y \in A$. Thus (i) is valid.
(ii) Let $x, y \in A$. Since $(x \odot y) * x \preceq y$ and $(x \odot y) \diamond x \preceq y$ and $y \in A$, it follows from (i) that $(x \odot y) * x,(x \odot y) \diamond x \in A$. Hence $x \odot y \in A$, since $x \in A$ and A is a pseudo ideal of X. If $z:=x \odot y$, then $x \preceq x \odot y$ and $y \preceq x \odot y$ by Proposition 4.10(ii). This completes the proof.

Theorem 4.12. Let I be a non-empty subset of a pseudo complicated $B H^{*}$-algebra. Then I is a pseudo ide al of X if and only if for all $x, y \in I$ and $z \in X, z \preceq x \odot y$ imply $z \in I$.

Proof. By Theorem 3.8 and Proposition 4.10(i).

References

[1] J. M. Font, A. J. Rodŕgez and A. Torrens, Wajsbergs Algebras, Stochastica, 8(1984), 5-31.
[2] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras, in: Proc. DMTS'01: Combinatorics, Computability and Logics, Springer, London, 2001, 97-114.
[3] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
[4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.
[5] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo d-algebras, Inform. Sci., 179(2009), 1751-1759.
[6] Y. B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Japon. Online, 7 (2002), 225-230.
[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japon., 1(1998), 347-354.
[8] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, $\mathbf{5 0}$ (1995), 89-96.
[9] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
[10] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31(1986), 889-894.
[11] E. H. Roh and S. Y. Kim, On $B H^{*}$-subalgebras of transitive $B H^{*}$-algebras, Far East J. Math. Sci., 1(1999), 255-263.

Young Bae Jun
Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea.
E-mail: skywine@gmail.com
Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu

[^0]: Received December 26, 2014. Accepted January 26, 2015.
 2010 Mathematics Subject Classification: 06F35, 03G25.
 Key words and phrases: pseudo atom, pseudo (strong) ideal, pseudo (complicated) BH -algebra.

 * Corresponding Author.

