Honam Mathematical J. ${\bf 37}$ (2015), No. 2, pp. 207–219 http://dx.doi.org/10.5831/HMJ.2015.37.2.207

ON PSEUDO BH-ALGEBRAS

Young Bae Jun and Sun Shin Ahn*

Abstract. As a generalization of BH-algebras, the notion of pseudo BH-algebra is introduced, and some of their properties are investigated. The notions of pseudo ideals, pseudo atoms, pseudo strong ideals, and pseudo homomorphisms in pseudo BH-algebras are introduced. Characterizations of their properties are provided. We show that every pseudo homomorphic image and preimage of a pseudo ideal is also a pseudo ideal. Any pseudo ideal of a pseudo BH-algebra can be decomposed into the union of some sets. The notion of pseudo complicated BH-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3,4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCK-algebras have several connections with other areas of investigation, such as: lattice ordered groups, MV-algebras, Wajsberg algebras, and implicative commutative semigroups. J. M. Font et al. [1] have discussed Wajsberg algebras which are term-equivalent to MV-algebras. D. Mundici [9] proved MV-algebras are categorically equivalent to bounded commutative semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [7] introduced the notion of a BHalgebra, which is a generalization of BCK/BCI-algebras. E. H. Roh and S. Y. Kim [11] estimated the number of BH^* -subalgebras of order i in a transitive BH^* -algebras by using Hao's method. G. Georgescu and A. Iorgulescu [2] introduced the notion of a pseudo BCK-algebra.

Received December 26, 2014. Accepted January 26, 2015.

²⁰¹⁰ Mathematics Subject Classification: 06F35, 03G25.

Key words and phrases: pseudo atom, pseudo (strong) ideal, pseudo (complicated) $BH\-$ algebra.

^{*}Corresponding Author.

Y. B. Jun characterized pseudo BCK-algebras. He found conditions for a pseudo BCK-algebra to be \wedge -semi-lattice ordered. Y. B. Jun, H.S. Kim, J. Neggers [5] introduced the notion of a pseudo *d*-algebra as a generalization of the idea of a *d*-algebra.

In this paper, we introduce the notion of pseudo BH-algebra as a generalization of BH-algebra and investigate some of their properties. We also define the notions of pseudo ideals, pseudo atoms, pseudo strong ideals, and pseudo homomorphisms in pseudo BH-algebras and provide characterizations of their properties in pseudo BH-algebras. We show that every pseudo homomorphic image and preimage of a pseudo ideal is also a pseudo ideal. Any pseudo ideal of a pseudo BH-algebra can be decomposed into the union of some sets. We introduced the notion of pseudo complicated BH-algebra and obtain some related properties.

2. Preliminaries

By a *BH*-algebra ([7]), we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

- (I) x * x = 0,
- (II) x * 0 = x,
- (III) x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

For brevity, we also call X a BH-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0. A non-empty subset S of a BH-algebra X is called a *subalgebra* of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1([7]). A non-empty subset A of a BH-algebra X is called an *ideal* of X if it satisfies:

- (I1) $0 \in A$,
- (I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.

An ideal A of a BH-algebra X is said to be a *translation ideal* of X if it satisfies:

(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) * (y * z) \in A$ and $(z * x) * (z * y) \in A$, $\forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. We will call $\{0\}$ and X a *trivial ideal* and a *improper ideal*, respectively. An ideal A is said to be proper if $A \neq X$.

Definition 2.2([11]). A *BH*-algebra X is called a *BH**-algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Example 2.3([7]). Let $X := \{0, a, b, c\}$ be a *BH*-algebra which is not a *BCK*-algebra with the following Cayley table:

*	0	1	2	3
0	0	1	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $A := \{0, 1\}$ is a translation ideal of X.

Definition 2.4. A non-empty subset A of a BH-algebra X is called a *strong ideal* of X if it satisfies (I1) and

(I4) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A, \forall x, y \in X$.

Example 2.5. (1) Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following Cayley table:

*	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Then X is a *BH*-algebra which is not a *BCK/BCI*-algebra, since $(4 * (4 * 5)) * 5 = (4 * 1) * 5 = 4 * 5 = 1 \neq 0$. Let $S := \{0, 1, 2, 3, 4\}$. It is easy to see that S is a subalgebra and a strong ideal of X.

(2) Let $X := \{0, 1, 2, 3, 4\}$ be a set with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	4
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Then X is a BH-algebra, which is not a BCK/BCI-algebra, since $((4 * 2) * (4 * 3)) * (3 * 2) = (4 * 3) * 1 = 3 * 1 = 3 \neq 0$. Let $A := \{0, 1, 2, 3\}$. Then A is a subalgebra, not an ideal, and not a strong ideal of X, since $4 * 3 = 3 \in A$, but $4 \notin A$. Let $B := \{0, 1\}$. It is easy to show that B is a subalgebra, an ideal of X, and not a strong ideal of X, since $(4 * 1) * 2 = 3 * 2 = 1 \in B$, but $4 * 2 = 4 \notin B$.

3. Pseudo *BH*-algebras

Definition 3.1. A *pseudo* BH-algebra is a non-empty set X with a constant 0 and two binary operations "*" and " \diamond " satisfying the following axioms:

 $\begin{array}{ll} (\mathrm{P1}) & x \ast x = x \diamond x = 0; \\ (\mathrm{P2}) & x \ast 0 = x \diamond 0 = x; \\ (\mathrm{P3}) & x \ast y = y \diamond x = 0 \text{ imply } x = y \text{ for all } x, y \in X. \end{array}$

For brevity, we also call X a pseudo BH-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0 if and only if $x \diamond y = 0$. Note that if (X; *, 0) is a BH-algebra, then letting $x \diamond y := x * y$, produces a pseudo BH-algebra $(X; *, \diamond, 0)$. Hence every BH-algebra is a pseudo BH-algebra in a natural way.

Definition 3.2. Let $(X; *, \diamond, 0)$ be a pseudo *BH*-algebra and let $\emptyset \neq I \subseteq X$. *I* is called a *pseudo subalgebra* of *X* if $x * y, x \diamond y \in I$ whenever $x, y \in I$. *I* is called a *pseudo ideal* of *X* if it satisfies

(PI1) $0 \in I$; (PI2) $x * y, x \diamond y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Example 3.3. (1) Let $X := \{0, a, b, c\}$ be a set with the following Cayley tables:

*	0	a	b	\mathbf{c}		\diamond	0	a	b	с
0	0	0	0	с	-	0	0	0	0	с
a	a	0	0	0		a	a	0	a	с
b	b	0	0	b		b	b	a	0	0
с	с	0	с	0		с	с	с	0	0

Then it is easy to show that (X; *, 0) and $(X; \diamond, 0)$ are not BH-algebras, but $(X; *, \diamond, 0)$ is a pseudo BH-algebra. Let $I := \{0, a\}$. Then I is a pseudo subalgebra of X, but not a pseudo ideal of X since b * a = $0, b \diamond a = a$, and $0, a \in I$, but $b \notin I$.

(2) Let $X := \{0, a, b, c\}$ be a set with the following Cayley tables:

On Pseudo BH-algebras

*	0	\mathbf{a}	b	\mathbf{c}	\diamond	0	\mathbf{a}	b	с
0	0	0	0	с	0	0	0	0	с
a	a	0	0	0	a	a	0	0	с
b	b	b	0	b	b	b	b	0	0
\mathbf{c}	c	0	a	0	с	c	с	0	0

Then it is easy to show that (X; *, 0) and $(X; \diamond, 0)$ are not *BH*-algebras, but $(X; *, \diamond, 0)$ is a pseudo *BH*-algebra. If we let $J := \{0, a, c\}$, then it is both a pseudo subalgebra of X and a pseudo ideal of X.

Proposition 3.4. Let *I* be a pseudo ideal of a pseudo *BH*-algebra *X*. If $x \in I$ and $y \preceq x$, then $y \in I$.

Proof. Assume that $x \in I$ and $y \preceq x$. Then y * x = 0 and $y \diamond x = 0$. By (PI1) and (PI2), we have $y \in I$.

Definition 3.5. A pseudo BH-algebra (X; *, 0) is called a *pseudo* BH^* algebra if it satisfies the identities $(x * y) \diamond x = 0$ and $(x \diamond y) * x = 0$ for all $x, y \in X$.

Theorem 3.6. For any element of a pseudo BH^* -algebra X, the initial section $\downarrow a := \{x \in X | x \leq a\}$ is a pseudo ideal of X if and only if the following implications hold:

(i) $\forall x, y, z \in X, x * y \leq z, y \leq z \implies x \leq z.$ (ii) $\forall x, y, z \in X, x \diamond y \leq z, y \leq z \implies x \leq z.$

Proof. Assume that for each $a \in X$, $\downarrow a$ is a pseudo ideal of X. Let $x, y, z \in X$ be such that $x * y \leq z, x \diamond y \leq z$ and $y \leq z$. Then $x * y \in \downarrow z$, $x \diamond y \in \downarrow z$ and $y \in \downarrow z$. Since $\downarrow z$ is a pseudo ideal of X, it follows from (PI2) that $x \in \downarrow z$, i.e., $x \leq z$.

Conversely, consider $\downarrow z$ for any $z \in X$. Obviously, $0 \in \downarrow z$. For every $y \in \downarrow z$, let $a * y \leq z, a \diamond y \leq z$. Then $a * y \in \downarrow z$ and $a \diamond y \in \downarrow z$. Since $y \in \downarrow z$, it follows from hypothesis that $a \leq z$, i.e., $a \in \downarrow z$. Hence $\downarrow z$ is a pseudo ideal of X for every $z \in X$.

Proposition 3.7. If J is a pseudo ideal of a pseudo BH-algebra X, then

(i) $\forall x, y, z \in X, x, y \in J, z * y \leq x \implies z \in J.$ (ii) $\forall a, b, c \in X, a, b \in J, c \diamond b \leq a \implies c \in J.$

Proof. Suppose that J is a pseudo ideal of X and let $x, y, z \in X$ be such that $x, y \in J$ and $z * y \preceq x$. Then $(z * y) \diamond x = 0 \in J$. Since $x \in J$ and J is a pseudo ideal of X, we have $z * y \in J$. Since $y \in J$ and J is a pseudo ideal of X, we obtain $z \in J$. Thus (i) is valid.

Now let $a, b, c \in X$ be such that $a, b \in J$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a = 0 \in J$ and so $c \diamond b \in J$. Since $b \in J$ and J is a pseudo ideal of X, we have $c \in J$. Thus (ii) is true.

Theorem 3.8 Let *I* be a non-empty subset of a pseudo BH^* -algebra *X*. Then *I* is a pseudo ideal of *X* if and only if for all $x, y \in I$ and $z \in X, z \diamond x \leq y, z * x \leq y$ imply $z \in I$.

Proof. Suppose that I is a pseudo ideal of X and $z \diamond x \leq y, z * x \leq y$ for all $x, y \in I$ and $z \in X$. It follows from Proposition 3.4 that $z \diamond x \in I$ and $z * x \in I$. Using (PI2), we have $z \in I$.

Conversely, let $x \in I$, since $0 \diamond x \leq x$ and $0 * x \leq x$, we have $0 \in I$. Let $x * y, x \diamond y \in I$ and $y \in I$. Since $x \diamond y \leq x \diamond y$ and $x * y \leq x * y$, we have $x \in I$. Thus I is a pseudo ideal of X. \Box

Proposition 3.9. For any pseudo BH^* -algebra X, the set

$$K(X) := \{ x \in X \mid 0 \preceq x \}$$

is a pseudo subalgebra of X.

Proof. Let $x, y \in K(X)$. Then $0 \leq x$ and $0 \leq y$. Hence $0 = 0 * y \leq x * y$ and $0 = 0 \diamond y \leq x \diamond y$ so that $x * y, x \diamond y \in K(X)$. Thus K(X) is a pseudo subalgebra of X.

Example 3.10. In Example 3.3 (2), $K(X) = \{0, a, b\}$ is a pseudo subalgebra of X, but not a pseudo ideal of X since $c \diamond b = 0, c * b = a$, and $b \in K(X)$, but $c \notin K(X)$.

Proposition 3.11. Let A be a pseudo ideal of a pseudo BH-algebra X. If B is a pseudo ideal of A, then it is a pseudo ideal of X.

Proof. Since *B* is a pseudo ideal of *A*, we have $0 \in B$. Let $y, x * y, x \diamond y \in B$ for some $x \in X$. If $x \in A$, then $x \in B$, since *B* is a pseudo ideal of *A*. If $x \in X - A$, then $y, x * y, x \diamond y \in B \subseteq A$ and so $x \in A$ because *A* is a pseudo ideal of *X*. Thus $x \in B$ since *B* is a pseudo ideal of *A*. This competes the proof.

Definition 3.12. An element w of a pseudo BH-algebra X is called a *pseudo atom* if for every $x \in X$, $x \preceq w$ implies x = w.

Obviously, 0 is a pseudo atom of X.

Proposition 3.13. Let X be a pseudo BH-algebra. If an element w of X satisfies the identity $y * (y \diamond (w * x)) = w * x$ for all $x, y \in X$, then w is a pseudo atom of X.

Proof. Let $y \in X$ be such that $y \preceq w$. Then $w = w * 0 = y * (y \diamond (w * 0)) = y * (y \diamond w) = y * 0 = y$. Hence w is a pseudo atom of X.

Lemma 3.14. A non-zero element $a \in X$ is a pseudo atom of X if $\{0, a\}$ is a pseudo ideal of X.

Proof. Straightforward.

213

Lemma 3.15. If every non-zero element of a BH^* -algebra X is a pseudo atom, then any pseudo subalgebra of X is a pseudo ideal of X.

Proof. Let S be a pseudo subalgebra of X and let $x, y * x, y \diamond x \in S$. Since $y * x \leq y$ and $y \diamond x \leq y$ for all $x, y \in X$ and y is an atom of Y, we have $y * x = y, y \diamond x = y \in S$. Thus S is a pseudo ideal of X. \Box

From above Lemmas we obtain the following Theorem.

Theorem 3.16. A BH^{*}-algebra contains only pseudo atoms if and only if its pseudo subalgebra is a pseudo ideal.

Definition 3.17. A non-empty subset A of a pseudo BH-algebra X is called a *pseudo strong ideal* of X if it satisfies (PI1) and

(PI3) $(x * y) \diamond z, y \in A$ imply $x * z \in A$;

(PI3') $(x \diamond y) * z, y \in A$ imply $x \diamond z \in A$ for all $x, y, z \in X$.

Note that if X is a pseudo BH-algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then the notions of a pseudo strong ideal and a strong ideal coincide.

Proposition 3.18. In a pseudo *BH*-algebra, any pseudo strong ideal is a pseudo ideal.

Proof. Putting z := 0 in (PI3) and (PI3'), we have $x * y, x \diamond y, y \in A$ imply $x \in A$.

Proposition 3.19. In a BH^* -algebra X, any pseudo ideal is a pseudo subalgebra.

Proof. Let A be a pseudo ideal of X. Then $0 \in A$ and $(x * y) \diamond x = (x \diamond y) * x = 0$ for any $x, y \in X$. Then for any $x \in A$, we have $(x * y) \diamond x, (x \diamond y) * x \in A$, which implies $x * y, x \diamond y \in A$.

Corollary 3.20. Any pseudo strong ideal of *BH**-algebra is a pseudo subalgebra.

Example 3.21. In Example 3.3 (2), $J := \{0, a, c\}$ is a pseudo ideal of X but not a pseudo strong ideal of X, since $(b * a) \diamond c = b \diamond c = 0$, and $(b \diamond c) * a = 0 * a = 0, a \in J$, but $b * c = b, b \diamond a = b \notin J$.

We provide conditions for a pseudo subalgebra to be a pseudo strong ideal.

Proposition 3.22. Let X be a pseudo BH-algebra. Then a pseudo subalgebra of X is a pseudo strong ideal of X if and only if $\forall x, y, z \in X, x \in A, y * z, y \diamond z \in X - A$ imply $(y * x) \diamond z, (y \diamond x) * z \in X - A$.

Proof. Assume that a pseudo subalgebra A of X is a pseudo strong ideal of X and let $x, y, z \in X$ be such that $x \in A$ and $y * z, y \diamond z \in X - A$. If $(y * x) \diamond z \notin X - A$, then $(y * x) \diamond z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y * z \in J$. This is a contradiction. If $(y \diamond x) * z \notin X - A$, then $(y \diamond x) * z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y \diamond z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y \diamond z \in A$. Since A is a pseudo strong ideal of X and $x \in A$, we have $y \diamond z \in A$. This is a contradiction.

Conversely, assume that $\forall x, y, z \in X, x \in A, y * z, y \diamond z \in A$ imply $(y * x) \diamond z, (y \diamond x) * z \in X - A$. Since A is a pseudo subalgebra of X, we have $0 \in A$. For every $x \in A$, let $(y * x) \diamond z, (y \diamond x) * z \in A$. If $y * z \notin A$ or $y \diamond z \notin A$, then $(y * x) \diamond z$ or $(y \diamond x) * z \in X - A$ by assumption. This is a contradiction. Hence $y * z \in A$ and $y \diamond z \in A$. Thus A is a pseudo strong ideal of X.

Putting z := 0 in Proposition 3.22, we have the following Corollary.

Corollary 3.23. Let A be a pseudo subalgebra of a pseudo BH-algebra X. Then A is a pseudo ideal of X if and only if $\forall x, y \in X, x \in A, y \in X - A$ imply $y * x, y \diamond x \in X - A$.

Definition 3.24. Let X and Y be a pseudo BH-algebras. A mapping $f: X \to Y$ is called a *homomorphism* of pseudo BH-algebras if f(x*y) = f(x) * f(y) and $f(x \diamond y) = f(x) \diamond f(y)$ for all $x, y \in X$.

Note that if $f: X \to Y$ is a homomorphism of pseudo *BH*-algebras, then $f(0_X) = 0_Y$ where 0_X and 0_Y are zero elements of X and Y, respectively.

Theorem 3.25. Let $f : X \to Y$ be a homomorphism of pseudo BH-algebras. If B is a pseudo strong ideal of Y, then $f^{-1}(B)$ is a pseudo strong ideal of X.

Proof. Assume that B is a pseudo strong ideal of Y. Obviously, $0_X \in f^{-1}(B)$. Let $x, y, z \in X$ be such that $(x * y) \diamond z, (x \diamond y) * z, y \in f^{-1}(B)$. Then $(f(x) * f(y)) \diamond f(z) = f((x * y) \diamond z), f(y) \in B$. Sine B is a pseudo strong ideal of Y, it follows from (PI3) and (PI3') that $f(x * z) = f(x) * f(z), f(x \diamond z) = f(x) \diamond f(z) \in B$ so that $x * z, x \diamond z \in f^{-1}(B)$. Hence $f^{-1}(B)$ is a pseudo strong ideal of X. \Box

Theorem 3.26. Let $f : X \to Y$ be a homomorphism of pseudo BH-algebras.

(i) If B is a pseudo ideal of Y, then $f^{-1}(B)$ is a pseudo ideal of X.

(ii) If f is surjective and I is a pseudo ideal of X, then f(I) is a pseudo ideal of Y.

Proof. (i) Straightforward.

(ii) Assume that f is surjective and let I be a pseudo ideal of X. Obviously, $0_Y \in f(I)$. For every $y \in f(I)$, let $a, b \in Y$ be such that $a * y \in f(I), b \diamond y \in f(I)$. Then there exist $x_*, x_\diamond \in I$ such that $f(x_*) = a * y$ and $f(x_\diamond) = b \diamond y$. Since $y \in f(I)$, there exists $x_y \in I$ such that $f(x_a) = a$ and $f(x_\diamond) = b$. Hence $f(x_a * x_y) = f(x_a) * f(x_y) = a * y \in f(I)$ and $f(x_b \diamond x_y) = f(x_b) \diamond f(x_y) = b \diamond y \in f(I)$, which imply that $x_a * x_y \in I$ and $x_b * x_y \in I$. Since I is a pseudo ideal of X, we get $x_a, x_b \in I$ and thus $a = f(x_a), b = f(x_b) \in f(I)$. Therefore f(I) is a pseudo ideal of X

Corollary 3.27. Let $f : X \to Y$ be a homomorphism of pseudo *BH*-algebras. Then Ker $f := \{x \in X | f(x) = 0\}$ is a pseudo strong ideal(ideal) of X.

Proof. Straightforward.

Proposition 3.28. Let $f : (X; *_1, \diamond_1, 0) \to (Y; *_2, \diamond_2, 0)$ be a homomorphism of pseudo *BH*-algebras. Then $x *_1 y, y \diamond_1 x \in Kerf$ if and only if $f(x) = f(y), \forall x \in X$.

Proof. If $x *_1 y, y \diamond_1 x \in Kerf$, then $f(x) *_2 f(y) = f(x *_1 y) = 0$ and $f(y) \diamond_2 f(x) = f(y \diamond_1 x) = 0$. Using (P3), we have f(x) = f(y).

Conversely, assume that $f(x) = f(y), \forall x \in X$. Then $f(x) *_2 f(y) = f(x *_1 y) = 0$ and $f(x) \diamond_2 f(y) = f(x \diamond_1 y) = 0$. Hence $x *_1 y, y \diamond_1 x \in Kerf$.

Proposition 3.29. Let $f: (X; *_1, \diamond_1, 0) \rightarrow (Y; *_2, \diamond_2, 0)$ be a homomorphism of pseudo BH-algebras. If $y \in Kerf$, then $x *_1 (x *_1 y), (x_1 * y) *_1 x, x \diamond_1 (x *_1 y), (x_1 *_1 y) \diamond_1 x, x *_1 (x \diamond_1 y), (x_1 *_1 y) *_1 x, x \diamond_1 (x \diamond_1 y), (x_1 \diamond_1 y) \diamond_1 x \in Kerf$.

Proof. Straightforward.

Lemma 3.30. Let $f : X \to Y$ be a homomorphism of pseudo BHalgebras. Then f is a monomorphism if and only if $Kerf = \{0\}$.

Proof. Straightforward.

The following theorems are easy to prove, and we omit the proofs.

Theorem 3.31. Let X, Y and Z be pseudo BH-algebras, and $h: X \to Y$ be an onto homomorphism of pseudo BH-algebras and $g: X \to Z$

be a homomorphism of pseudo BH-algebras. If $Kerh \subseteq Kerg$, then there exists a unique homomorphism of pseudo BH-algebras $f: Y \to Z$ satisfying $f \circ h = g$.

Theorem 3.32. Let X, Y and Z be pseudo BH-algebras, and $g: X \to Z$ be a homomorphism of pseudo BH-algebras and $h: Y \to Z$ be an one-to-one homomorphism of pseudo BH-algebras. If $Img \subseteq Imh$, then there exists a unique homomorphism of pseudo BH-algebras $f: X \to Y$ satisfying $h \circ f = g$.

Note that the standard projections from their direct product or sum of pseudo BH-algebras to their components are homomorphism of pseudo BH-algebras with kernels having the usual form.

4. Pseudo Complicated BH-algebras

Let X be a pseudo BH-algebra. For any $a, b \in X$, we denote

$$A(a,b) := \{ x \in X | (x * a) \diamond b = 0 \}.$$

Theorem 4.1. If *I* is a pseudo ideal of a pseudo *BH*-algebra *X*, then $I = \bigcup_{a,b \in I} A(a,b)$.

Proof. Let I be a pseudo ideal of a pseudo BH-algebra X. If $a \in I$, then $(a * a) \diamond 0 = 0 \diamond 0 = 0$. Hence $a \in A(a, 0)$. It follows that

$$I \subseteq \bigcup_{a \in I} A(a, 0) \subseteq \bigcup_{a, b \in I} A(a, b).$$

Let $x \in \bigcup_{a,b \in I} A(a,b)$. Then there exist $a, b \in I$ such that $x \in A(a,b)$ so that $(x * a) \diamond b = 0 \in I$. Since I is a pseudo ideal of X, we have $x \in I$. Thus $\bigcup_{a,b \in I} A(a,b) \subseteq I$, and consequently $I = \bigcup_{a,b \in I} A(a,b)$, \Box

Corollary 4.2. If *I* is a pseudo ideal of a pseudo *BH*-algebra *X*, then $I = \bigcup_{a \in I} A(a, 0)$.

Proof. By Theorem 4.1, we have

Ī

$$\bigcup_{a \in I} A(a, 0) \subseteq \bigcup_{a, b \in I} A(a, b) \subseteq I.$$

If $a \in I$, then $a \in A(a, 0)$, since $(a * a) \diamond 0 = 0 \diamond 0 = 0$. Hence $I \subseteq \bigcup_{a \in I} A(a, 0)$. This completes the proof.

Example 4.3. Let $X := \{0, a, b, c\}$ be as in Example 3.3(2). Set $J := \{0, a, c\}$. Then J is a pseudo ideal of X and $A(a, 0) = \{x \in X | (x*a) \diamond 0 = 0\} = J$.

Theorem 4.4. Let *I* be a non-empty subset of a *BH*-algebra *X* such that $0 \in I$ and $I = \bigcup_{a,b \in I} A(a,b)$. Then *I* is a pseudo ideal of *X*.

Proof. Let $x * y, x \diamond y, y \in I = \bigcup_{a,b \in I} A(a,b)$. Since $(x * y) \diamond (x * y) = 0$, we have $x \in A(y, x * y)$ and so $x \in I$. Hence I is a pseudo ideal of X. \Box

Combining Theorems 4.1 and 4.4, we have the following corollary.

Corollary 4.5. Let X be a pseudo BH-algebra. Then I is a pseudo ideal of X if and only if $I = \bigcup_{a,b \in I} A(a,b)$.

Note that A(a, b) is not a pseudo ideal of X in general as seen in the following example.

Example 4.6. Let $X := \{0, a, b, c\}$ be a set with the following Cayley tables:

*	0	a	b	c	\diamond	0	a	b	с
0	0	0	0	a	0	0	0	0	С
a	a	0	0	a	a	a	0	a	а
\mathbf{b}	b	0	0	\mathbf{b}	b	b	b	0	0
с	c	a	a	0	с	с	с	0	0

Then it is easy to show that (X; *, 0) and $(X; \diamond, 0)$ are not BH-algebras, but $(X; *, \diamond, 0)$ is a pseudo BH-algebra. Let $I := \{0, a, b\}$. Then I is not a pseudo ideal of X since $c * b = a, c \diamond b = 0 \in I$, and $a, 0 \in I$, but $c \notin I$. Also $A(a, 0) = \{x \in X | (x * a) \diamond 0 = 0\} = I$.

A pseudo ideal I of a pseudo BH-algebra X is said to be closed if $0 * x, 0 \diamond x \in I$ for any $x \in I$.

Proposition 4.7. Let X be a pseudo BH^* -algebra. Every pseudo ideal of X is closed.

Proof. Since $(0 * x) \diamond 0 = 0 * x = 0$ and $(0 \diamond x) * 0 = 0 \diamond x = 0$ for all $x \in X$, we have 0 * x = 0 and $0 \diamond x = 0$.

Proposition 4.8. Let I be a subset of a pseudo BH-algebra X with the following conditions:

(ii) $x * z, x \diamond z, y * z, y \diamond z \in I$ and $z \in I$ imply $x * y, x \diamond y \in I$ for any $x, y, z \in X$.

Then I is a pseudo subalgebra (closed ideal) of X.

Proof. Let $x, y \in I$. By (P2), we have $x = x * 0 = x \diamond 0 = 0$ and $y = y * 0 = y \diamond 0$. It follows from (ii) that $x * y \in I$ and $x \diamond y \in I$. Hence I is a pseudo subalgebra of X.

Assume that I satisfies (i) and (ii). We claim that I is a pseudo closed ideal of X. Let $x * y, x \diamond y, y \in I$. Since $0 * 0 = 0 \diamond 0, y * 0 = y \diamond 0$,

⁽i) $0 \in I$,

and $0 \in I$, it follows from (ii) that $0 * y, 0 \diamond y \in I$ which proves that I is closed. Since $x * y, x \diamond y, 0 * y, 0 \diamond y, y \in I$, by applying (ii) again, we obtain that $x = x * 0 = x \diamond 0 \in I$, so that I is a pseudo ideal of X.

Definition 4.9. A pseudo BH^* -algebra X is said to be *pseudo complicated* if the following condition holds:

(PC) there exist, for all $a, b \in X$, $a \odot b \stackrel{notation}{=} \max\{x | x * a \preceq b\} = \max\{x | x \diamond a \preceq b\}.$

Note that A(a, b) is a non-empty, since $0, a, b \in A(a, b)$, where X is a pseudo BH^* -algebra.

Proposition 4.10. In a pseudo complicated BH*-algebra, the following hold:

(i) $z \preceq x \odot y \Leftrightarrow z * x \preceq y \Leftrightarrow z \diamond x \preceq y$. (ii) $a \preceq a \odot b$ and $b \preceq a \odot b$. (iii) $a \odot 0 = a = 0 \odot a$.

Proof. Straightforward.

Theorem 4.11. Let A be a non-empty subset of a pseudo complicated BH^* -algebra X. If A is a pseudo ideal of X, then it satisfies the following conditions:

(i) $(\forall x \in A)(\forall y \in X)(y \preceq x \Rightarrow y \in A).$ (ii) $(\forall x, y \in A) (\exists z \in A) (x \leq z, y \leq z).$

Proof. (i) Assume that A is a pseudo ideal of X. Let $x \in A, y \in X$ with $y \preceq x$. Then $y * x = y \diamond x = 0$. Since A is a pseudo ideal of X, $y \in A$. Thus (i) is valid.

(ii) Let $x, y \in A$. Since $(x \odot y) * x \preceq y$ and $(x \odot y) \diamond x \preceq y$ and $y \in A$, it follows from (i) that $(x \odot y) * x, (x \odot y) \diamond x \in A$. Hence $x \odot y \in A$, since $x \in A$ and A is a pseudo ideal of X. If $z := x \odot y$, then $x \prec x \odot y$ and $y \preceq x \odot y$ by Proposition 4.10(ii). This completes the proof.

Theorem 4.12. Let I be a non-empty subset of a pseudo complicated BH*-algebra. Then I is a pseudo ide al of X if and only if for all $x, y \in I$ and $z \in X$, $z \preceq x \odot y$ imply $z \in I$.

Proof. By Theorem 3.8 and Proposition 4.10(i).

218

On Pseudo $BH\mbox{-}algebras$

References

- J. M. Font, A. J. Rodrígez and A. Torrens, Wajsbergs Algebras, Stochastica, 8(1984), 5-31.
- G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras, in: Proc. DMTS'01: Combinatorics, Computability and Logics, Springer, London, 2001, 97-114.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
- [4] K. Iséki and S. Tanaka , An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.
- [5] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo d-algebras, Inform. Sci., 179(2009), 1751-1759.
- [6] Y. B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Japon. Online, 7(2002), 225-230.
- [7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japon., 1(1998), 347-354.
- [8] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, 50(1995), 89-96.
- [9] J. Meng and Y. B. Jun, *BCK-algebras*, Kyung Moon Sa, Seoul, 1994.
- [10] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31(1986), 889-894.
- [11] E. H. Roh and S. Y. Kim, On BH^{*}-subalgebras of transitive BH^{*}-algebras, Far East J. Math. Sci., 1(1999), 255-263.

Young Bae Jun Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea. *E-mail*: skywine@gmail.com

Sun Shin Ahn Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. *E-mail*: sunshine@dongguk.edu