Honam Mathematical J. ${\bf 37}$ (2015), No. 2, pp. 221–233 http://dx.doi.org/10.5831/HMJ.2015.37.2.221

MIGHTY FILTERS IN BE-ALGEBRAS

Hye Ran Lee and Sun Shin Ahn*

Abstract. The notion of a mighty (vague) filter in a BE-algebra is introduced, and the relation between a (vague) filter and a mighty (vague) filter are given. We investigate an equivalent condition for a (vague) filter to be mighty, and state an extension property for mighty filter. Also we define the notion of an *n*-fold mighty filter which is an extended notion of a mighty filter in a BE-algebra. Characterizations of an *n*-fold mighty filter are given. Extension property for an *n*-fold mighty filter are provided.

1. Introduction

Several authors from time to time have made a number of generalizations of Zadeh's fuzzy set theory [12]. Of course, the notion of vague set theory introduced by Gau and Buehrer [4] is of interest to us. Using the vague set in the sense of Gau and Buehrer, Biswas [3] studied vague groups. Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [5,6]. In [8]. H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a generalization of a BCK-algebra. Jun and Park [7,11] studied vague ideals and vague deductive systems in subtraction algebras. K. J. Lee, Y. H. Kim and Y. U. Cho [9] introduced the notion of vague BCK/BCI-algebras and vague ideals, and investigated their properties. Sun Shin Ahn and Jung Mi Ko [2] introduced the notion of a vague filter in BE-algebra, and investigate some properties of it.

In this paper, we introduce the notions of a mighty filter and a mighty vague filter in a BE-algebra and study the relation between a (vague) filter and a mighty (vague) filter. We provide an equivalent condition for a (vague) filter to be (vague) mighty, and state an extension property for mighty filter. Also we define the notion of an n-fold mighty

Received February 16, 2015. Accepted March 15, 2015.

²⁰¹⁰ Mathematics Subject Classification: $06F35,\,03G25.$

Key words and phrases: BE-algebra, filter, mighty (vague) filter.

^{*}Corresponding Author.

filter which is an extended notion of a mighty filter in a BE-algebra. We investigate characterizations of an *n*-fold mighty filter and study an extension property for an *n*-fold mighty filter.

2. Preliminaries

We recall some definitions and results discussed in [8].

An algebra (X; *, 1) of type (2, 0) is called a *BE-algebra* if

(BE1) x * x = 1 for all $x \in X$; (BE2) x * 1 = 1 for all $x \in X$; (BE3) 1 * x = x for all $x \in X$; (BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$ (exchange)

We introduce a relation " \leq " on a *BE*-algebra X by $x \leq y$ if and only if x * y = 1. A non-empty subset S of a *BE*-algebra X is said to be a *subalgebra* of X if it is closed under the operation "*". Noticing that x * x = 1 for all $x \in X$, it is clear that $1 \in S$. A *BE*-algebra (X; *, 1) is said to be *self distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Definition 2.1.([8]) Let (X; *, 1) be a *BE*-algebra and let *F* be a non-empty subset of *X*. Then *F* is called a *filter* of *X* if (F1) $1 \in F$;

(F2) $x * y \in F$ and $x \in F$ imply $y \in F$.

Proposition 2.2.([8]) (X; *, 1) is a *BE*-algebra, then x * (y * x) = 1 for any $x, y \in X$.

Example 2.3.([8]) Let $X := \{1, a, b, c, d, 0\}$ be a *BE*-algebra with the following table:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	$egin{array}{c} a \\ 1 \\ 1 \\ a \\ 1 \\ 1 \\ 1 \end{array}$	a	1	1	a
0	1	1	1	1	1	1

Then $F_1 := \{1, a, b\}$ is a filter of X, but $F_2 := \{1, a\}$ is not a filter of X, since $a * b \in F_2$ and $a \in F_2$, but $b \notin F_2$.

Proposition 2.4. Let (X; *, 1) be a *BE*-algebra and let *F* be a filter of *X*. If $x \leq y$ and $x \in F$ for any $y \in X$, then $y \in F$.

Proposition 2.5. Let (X; *, 1) be a self distributive *BE*-algebra. Then following hold: for any $x, y, z \in X$,

- (i) if $x \leq y$, then $z * x \leq z * y$ and $y * z \leq x * z$.
- (ii) $y * z \le (z * x) * (y * z)$.
- (iii) $y * z \le (x * y) * (x * z)$.

A *BE*-algebra (X; *, 1) is said to be *transitive* if it satisfies Proposition 2.5(iii). If a *BE*-algebra X is transitive, then $y \leq z$ imply $x * y \leq x * z$ and $z * x \leq y * x$ for all $x, y \in X$ ([10]).

Definition 2.6.([3]) A vague set A in the universe of discourse U is characterized by two membership functions given by:

(1) A truth membership function

$$t_A: U \to [0,1],$$

and

(2) A false membership function

$$f_A: U \to [0,1],$$

where $t_A(u)$ is a lower bound of the grade of membership of u derived from the "evidence for u", and $f_A(u)$ is a lower bound on the negation of u derived from the "evidence against u", and

$$t_A(u) + f_A(u) \le 1.$$

Thus the grade of membership of u in the vague set A is bounded by a subinterval $[t_A(u), 1 - f_A(u)]$ of [0, 1]. This indicates that if the actual grade of membership is $\mu(u)$, then

$$t_A(u) \le \mu(u) \le 1 - f_A(u).$$

The vague set A is written as

$$A = \{ \langle u, [t_A(u), f_A(u)] \rangle | u \in U \},\$$

where the interval $[t_A(u), 1 - f_A(u)]$ is called the *vague value* of u in A and is denoted by $V_A(u)$.

3. Mighty filters

In what follows, let X be a *BE*-algebra unless otherwise specified.

Proposition 3.1. Let F be a filter of a *BE*-algebra X. Then F is a subalgebra of X.

Proof. By Proposition 2.2, we have y * (x * y) = 1 for any $x, y \in X$. Since F is a filter of X, we have $x * y \in F$ for any $x, y \in F$. This completes the proof.

Proposition 3.2. Let *F* be a non-empty subset of a *BE*-algebra *X*. Then *F* is a filter of *X* if and only if for all $x, y \in F$ and $z \in X$, $x \leq y * z$ implies $z \in F$.

Proof. Let F be a filter and let $x, y \in F$ and $z \in X$. If $x \leq y * z$, then $x * (y * z) = 1 \in F$. Since $x \in F$ and F is a filter, we have $y * z \in F$. Using (F2), we obtain $z \in F$.

Conversely, we assume that for all $x, y \in F$ and $z \in X$, $x \leq y * z$ implies $z \in F$. Let $a \in F$. Then a * (a * 1) = a * 1 = 1. By assumption, we have $1 \in F$. If $x \in F$ and $x * z \in F$, then we obtain (x * z) * (x * z) = 1. Hence $z \in F$. This F is a filter of X.

Definition 3.3. A non-empty subset F of a BE-algebra X is called a *mighty filter* of X if it satisfies (F1) and

(F3) $z*(y*x) \in F$ and $z \in F$ imply $((x*y)*y)*x \in F$ for all $x, y, z \in X$.

Example 3.4. Let $X := \{1, a, b, c, d, 0\}$ be a set with the following table:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	b	c	b	c
b	1	$\begin{array}{c} a\\ 1\\ a\\ a\\ 1\\ 1\\ 1\end{array}$	1	b	a	d
c	1	a	1	1	a	a
d	1	1	1	b	1	b
0	1	1	1	1	1	1

It is easy to check that X is a (transitive) *BE*-algebra and $F := \{1, b, c\}$ is a mighty filter of X.

Theorem 3.5. Every mighty filter of a BE-algebra X is a filter of X.

Proof. Let F be a mighty filter of X and let $z * x \in F$ and $z \in F$. Then $z * (1 * x) = z * x \in F$. It follows from (F3) that $x = ((x * 1) * 1) * x \in F$. Hence F is a filter.

The converse of Theorem 3.5 is not true in general as seen the following example.

Example 3.6. Let $X := \{1, a, b, c, d\}$ be a set with the following table:

*	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	$egin{array}{c} a \\ 1 \\ a \\ 1 \\ 1 \end{array}$	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

Then X is a self distributive *BE*-algebra ([8]) and $F := \{1\}$ is a filter of X, but not a mighty filter of X since $1*(c*a) = 1 \in F$ and $((a*c)*c)*a = a \notin F$.

We give an equivalent condition for a filter to be a mighty filter.

Theorem 3.7. A filter F is mighty if and only if it satisfies:

(*) $y * x \in F$ implies $((x * y) * y) * x \in F$ for all $x, y \in X$.

Proof. Assume that F is a mighty filter of X and let $x, y \in X$ be such that $y * x \in F$. Then $1 * (y * x) = y * x \in F$ and $1 \in F$. It follows from (F3) that $((x * y) * y) * x \in F$ for all $x, y \in X$.

Conversely, let F be a filter of X satisfying (*) and let $x, y, z \in X$ be such that $z * (y * x) \in F$ and $z \in F$. Then $y * x \in F$ by (F2) and hence $((x * y) * y) * x \in F$ by (*). Thus F is a mighty filter of X. \Box

Theorem 3.8. [Extension property for a mighty filter] Let F and G be filters of a transitive *BE*-algebra X such that $F \subseteq G$. If F is mighty, then so is G.

Proof. Let $x, y \in X$ be such that $y * x \in G$. Then $y * ((y * x) * x) = (y * x) * (y * x) = 1 \in F$. Since F is mighty, it follows from Theorem 3.7 that $((((y * x) * x) * y) * y) * ((y * x) * x) \in F$ so that $(y * x) * (((((y * x) * x) * y) * y) * x) \in G$. Since G is a filter and $y * x \in G$,

we have $((((y * x) * x) * y) * y) * x \in G$. Since X is transitive, we get

$$[(((((y * x) * x) * y) * y) * x] * [((x * y) * y) * x]$$

$$\geq (((x * y) * y) * (((((y * x) * x) * y) * y))$$

$$\geq ((((y * x) * x) * y) * (x * y))$$

$$\geq x * (((y * x) * x) * y)$$

$$= (y * x) * (x * x)$$

$$= (y * x) * 1 = 1.$$

It follows from Proposition 3.2 that $((x * y) * y) * x \in G$. Hence, by Theorem 3.7, G is a mighty filter of X.

Corollary 3.9. Every filter of a transitive BE-algebra X is mighty if and only if the filter $\{1\}$ is mighty.

Proof. Straightforward.

Let F be a filter of a transitive BE-algebra X. Define a relation ρ on X by $(x, y) \in \rho$ if and only if $x * y \in F$ and $y * x \in F$. Then ρ is a congruence relation on X (See [10]). Denote $X/\rho := \{[x]_{\rho} | x \in X\}$, where $[x]_{\rho} := \{y \in X | (x, y) \in \rho\}$. We define a binary operation *' on X/ρ by $[x]_{\rho} *' [y]_{\rho} := [x * y]_{\rho}$. This definition is well defined since ρ is a congruence relation. Also $[1]_{\rho} = F$.

Proposition 3.10. $(X/\rho; *', [1]_{\rho})$ is a transitive *BE*-algebra.

Proof. By Proposition 5.4 of [10], $(X/\rho; *', [1]_{\rho})$ is a *BE*-algebra. It is easy to check that X/ρ is transitive. This completes the proof.

Theorem 3.11. A filter F of a transitive BE-algebra X is mighty if and only if every filter of the quotient algebra X/ρ is mighty.

Proof. Assume that F is a mighty filter of X and let $x, y \in X$ be such that $[x]_{\rho} *' [y]_{\rho} = [1]_{\rho}$. Then $x * y \in F$ and so $((y * x) * x) * y \in F$ by Theorem 3.7. Hence $(([y]_{\rho} *' [x]_{\rho}) *' [y]_{\rho} = [((y * x) * x) * y]_{\rho} = [1]_{\rho}$ which proves that $\{[1]_{\rho}\}$ is a mighty filter of X/ρ . By Corollary 3.9, every filter of X/ρ is mighty.

Conversely, suppose that every filter of X/ρ is mighty and let $x, y \in X$ be such that $y * x \in F$. Then $[y]_{\rho} *'[x]_{\rho} = [y * x]_{\rho} = [1]_{\rho}$. Since $\{[1]_{\rho}\}$ is a mighty filter of X/ρ , it follows from Theorem 3.7 that $[((x * y) * y) * x]_{\rho} =$ $(([x]_{\rho} *'[y]_{\rho}) *'[y]_{\rho}) *'[x]_{\rho} = [1]_{\rho}$, i.e., $((x * y) * y) * x \in F$. Hence F is a mighty filter of X by Theorem 3.7.

4. Mighty vague filters

For our discussion, we shall use the following notations, which are given in [3], on interval arithmetic.

Let I[0,1] denote the family of all closed subintervals of [0,1]. We define the term "imax" to mean the maximum of two intervals as

$$\max(I_1, I_2) = [\max(a_1, a_2), \max(b_1, b_2)],$$

where $I_1 = [a_1, b_1], I_2 = [a_2, b_2] \in I[0, 1]$. Similarly, we define "imin". The concept of "imax" and "imin" could be extended to define "isup" and "iinf" of infinite number of elements of I[0, 1]. It is obvious that $L = \{I[0, 1], \text{isup}, \text{iinf}, \leq\}$ is a lattice with universal bounds [0, 0] and [1, 1] ([3]).

Definition 4.1.([2]) A vague set A of a BE-algebra X is called a *vague filter* of X if the following conditions are true:

(c1) $(\forall x \in X) (V_A(1) \succeq V_A(x)),$ (c2) $(\forall x, y \in X) (V_A(y) \succeq \min\{V_A(x * y), V_A(x)\}),$ that is,

$$t_A(1) \ge t_A(x), 1 - f_A(1) \ge 1 - f_A(x)$$

and

$$t_A(y) \ge \min\{t_A(x * y), t_A(x)\}, 1 - f_A(y) \ge \min\{1 - f_A(x * y), 1 - f_A(x)\}$$

for all $x, y \in X$.

Proposition 4.2.([2]) Every vague filter A of a BE-algebra X satisfies the following properties:

(i) $(\forall x, y \in X)(x \leq y \Rightarrow V_A(x) \preceq V_A(y)),$ (ii) $(\forall x, y, z \in X)(V_A(x * z) \succeq \min\{V_A(x * (y * z)), V_A(y)\}).$

Theorem 4.3.([2]) Let A be a vague set of a BE-algebra X. Then A is a vague filter of X if and only if it satisfies

$$(\forall x, y, z \in X) (z \leq x * y \Rightarrow V_A(y) \succeq \min\{V_A(x), V_A(z)\}).$$

Definition 4.4. A vague set A of a BE-algebra X is called a *mighty* vague filter of X if it satisfies (c1) and

(c3)
$$(\forall x, y, z \in X) (V_A(((x * y) * y) * x) \succeq \min\{V_A(z * (y * x)), V_A(z)\}),$$

Hye Ran Lee and Sun Shin Ahn

that is,

$$t_A(1) \ge t_A(x), 1 - f_A(1) \ge 1 - f_A(x)$$

and

$$t_A(((x*y)*y)*x) \ge \min\{t_A(z*(y*x)), t_A(z)\},\$$

$$1 - f_A(((x*y)*y)*x) \ge \min\{1 - f_A(z*(y*x)), 1 - f_A(z)\}$$

for all $x, y, z \in X$.

Let us illustrate this definition using the following example.

Example 4.5. Consider a *BE*-algebra $X = \{1, a, b, c, d, 0\}$ as in Example 3.4. Let *A* be a vague set in *X* defined as follows:

$$\begin{split} A &:= \{ \langle 1, [0.8, 0.2] \rangle, \langle a, [0.5, 0.3] \rangle, \langle b, [0.8, 0.2] \rangle, \\ \langle c, [0.8, 0.2] \rangle, \langle d, [0.5, 0.3] \rangle, \langle 0, [0.5, 0.3] \rangle \}. \end{split}$$

It is routine to verify that A is a mighty vague filter of X.

Theorem 4.6. Every mighty vague filter is a vague filter.

Proof. Let A be a mighty vague filter of a *BE*-algebra X. If we take y := 1 in (c3), then we obtain (c2). Hence A is a vague filter of X. \Box

The converse of Theorem 4.6 is not true in general as the following example.

Example 4.7. Consider a *BE*-algebra $X = \{1, a, b, c, d\}$ as in Example 3.6. Let *B* be a vague set in *X* defined as follows:

 $B := \{ \langle 1, [0.7, 0.2] \rangle, \langle a, [0.5, 0.3] \rangle, \langle b, [0.5, 0.3] \rangle, \langle c, [0.5, 0.3] \rangle, \langle d, [0.5, 0.3] \rangle \}.$

It is routine to verify that B is a vague filter of X. But it is not a mighty vague filter of X, since

$$V_B(((a * c) * c) * a) = V_B(a) \not\succeq V_B(1) = \min\{V_B(1 * (c * a)), V_B(1)\}).$$

Now, we give an equivalent condition for every vague filter to be a mighty vague filter.

Theorem 4.8. For any vague filter A of a BE-algebra X, the following are equivalent:

- (i) A is a mighty vague filter of X.
- (ii) $(\forall x, y \in X)(V_A(((x * y) * y) * x) \succeq V_A(y * x)).$

Proof. (i) \Rightarrow (ii) Assume that A is a mighty vague filter of X. Putting z := 1 in (c3) and , we have

$$V_A(((x * y) * y) * x) \succeq \min\{V_A(1 * (y * x)), V_A(1)\}$$

= $\min\{V_A(y * x)), V_A(1)\}$
= $V_A(y * x)).$

Hence (ii) holds.

 $(ii) \Rightarrow (i)$ Suppose that (ii) holds. Using (c2), we have

$$V_A(((x*y)*y)*x) \succeq V_A(y*x)$$
$$\succeq \min\{V_A(z*(y*x)), V_A(z)\}$$

for all $x, y, z \in X$. Thus A is a mighty vague filter of X.

5. *n*-fold mighty filters

In what follows, let n and X denote a positive integer and a *BE*algebra, respectively, unless otherwise specified. For any elements x and y of X, let $x^n * y$ denote $x * (\cdots * (x * (x * y)) \cdots)$ in which x occurs ntimes, and $x^0 * y = y$.

Definition 5.1. A non-empty subset F of a BE-algebra X is called an *n*-fold mighty filter of X if it satisfies (F1) and

(F4) $z * (y * x) \in F$ and $z \in F$ imply $((x^n * y) * y) * x \in F$ for all $x, y, z \in X$.

Definition 5.2. A non-empty subset F of a BE-algebra X is said to be a *weak n-fold mighty filter* of X if it satisfies (F1) and

(F5) $z * ((y^n * x) * x) \in F$ and $z \in F$ imply $(x * y) * y \in F$ for all $x, y, z \in X$.

Putting y = 1 and y = x in (F4) and (F5), respectively, and using (BE1), (BE2) and (BE3), we know that every (weak) *n*-fold mighty filter is a filter.

Example 5.3. Consider a *BE*-algebra $X = \{1, a, b, c, d, 0\}$ which is given in Example 2.3. It is easy to check that $F := \{1, a\}$ is a 2-fold mighty filter of X.

Theorem 5.4. Let F be a filter of a *BE*-algebra X. Then

(i) F is an n-fold mighty filter of X if and only if $((x^n * y) * y) * x \in F$ for all $x, y \in X$ with $y * x \in F$.

Hye Ran Lee and Sun Shin Ahn

(ii) F is a weak n-fold mighty filter of X if and only if $(x * y) * y \in F$ for all $x, y \in X$ with $(y^n * x) * x \in F$.

Proof. (i) Assume that F is an *n*-fold mighty filter of X and let $x, y \in X$ be such that $y * x \in F$. Then 1 * (y * x) = y * x and $1 \in F$. Using (F4), we have $((x^n * y) * y) * x \in F$.

Conversely, let F be a filter of X such that $((x^n * y) * y) * x \in F$ for all $x, y \in X$ with $y * x \in F$. Let $x, y, z \in X$ be such that $z * (y * x) \in F$ and $z \in F$. By (F2), we have $y * x \in F$. By assumption, we have $((x^n * y) * y) * x \in F$. Thus F is an n-fold mighty filter of X.

(ii) Let F be a filter of X such that $z * ((y^n * x) * x) \in F$ and $z \in F$. By (F2), we have $(y^n * x) * x \in F$. Using assumption, we get $(x * y) * y \in F$. Hence F is a weak n-fold mighty filter of X.

Conversely, assume that F is a weak *n*-fold mighty filter of X. Let $x, y \in X$ with $(y^n * x) * x \in F$. Then $1*((y^n * x) * x) = (y^n * x) * x \in F$ and $1 \in F$. By (F5), we have $(x * y) * y \in F$. This competes the proof. \Box

Corollary 5.5. Let F be a filter of a BE-algebra X. Then F is mighty if and only if $((x * y) * y) * x \in F$ for all $x, y \in X$ with $y * x \in F$.

Proof. Put in n = 1 in Theorem 5.4(i).

Theorem 5.6. [Extension Property for an *n*-fold mighty filter] Let F and G be filters of a transitive *BE*-algebra X such that $F \subseteq G$. If F is *n*-fold mighty, then so is G.

Proof. Let $x, y \in X$ be such that $y * x \in G$. Setting w = (y * x) * x, then $y * w = y * ((y * x) * x) = (y * x) * (y * x) = 1 \in F$. Since F is n-fold, it follows from Theorem 5.4(i) that

$$(y * x) * (((w^n * y) * y) * x) = ((w^n * y) * y) * ((y * x) * x)$$
$$= ((w^n * y) * y) * w \in F \subseteq G,$$

which implies from (F2) that $((w^n * y) * y) * x \in G$. Since $x \leq w$, we have $w^n * y \leq x^n * y$, and so $((w^n * y) * y) * x \leq ((x^n * y) * y) * x$. It follows from Proposition 2.4 that $((x^n * y) * y) * x \in G$. Hence G is an *n*-fold mighty filter of X by Theorem 5.4(i).

Corollary 5.7. Every filter of a transitive BE-algebra X is n-fold mighty filter if and only if the filter $\{1\}$ is n-fold mighty.

Proof. Straightforward.

Corollary 5.8. Let *F* and *G* be filters of a transitive *BE*-algebra *X* such that $F \subseteq G$. If *F* is mighty, then so is *G*.

Proof. Put n = 1 in Theorem 5.6.

Let F be a filter of a transitive BE-algebra. Define a relation ρ on X by $(x, y) \in \rho$ if and only if $x * y \in F$ and $y * x \in F$. Then ρ is a congruence relation on X (see [10]). Denote $X/\rho := \{[x]_{\rho} | x \in X\}$, where $[x]_{\rho} := \{y \in X | (x, y) \in \rho\}$. Then $(X/\rho; *', [1]_{\rho})$ is a transitive B-algebra (see Proposition 3.10), where $[x]_{\rho} *' [y]_{\rho} := [x * y]_{\rho}$.

Theorem 5.9. A filter F of a transitive BE-algebra X is n-fold mighty if and only if every filter of the quotient algebra X/ρ is n-fold mighty.

Proof. Assume that F is an n-fold mighty filter of a transitive BEalgebra X and let $x, y \in X$ be such that $[x]_{\rho} *'[y]_{\rho} = [1]_{\rho}$. Then $x * y \in F$ and so $((y^n * x) * x) * y \in F$ by Theorem 5.4(i). Hence $(([y]_{\rho}^n *'[x]_{\rho}) *'[x]_{\rho}) *'[y]_{\rho} = [((y^n * x) * x) * y]_{\rho} = [1]_{\rho}$ which proves that $\{[1]_{\rho}\}$ is an n-fold mighty filter of X/ρ . By Corollary 5.7, every filter of X/ρ is n-fold mighty.

Conversely, suppose that every filter of X/ρ is *n*-fold mighty and let $x, y \in X$ be such that $y * x \in F$. Then $[y]_{\rho} *' [x]_{\rho} = [y * x]_{\rho} = [1]_{\rho}$. Since $\{[1]_{\rho}\}$ is an *n*-fold mighty filter of X/ρ , it follows from Theorem 5.4(i) that $[((x^n * y) * y) * x]_{\rho} = ([x]_{\rho}^n *' [y]_{\rho}) *' [y]_{\rho}) *' [x]_{\rho} = [1]_{\rho}$, i.e., $((x^n * y) * y) * x \in F$. Hence *F* is an *n*-fold mighty filter of *X* by Theorem 5.4(i).

Corollary 5.10. A filter F of a transitive BE-algebra X is mighty if and only if every filter of the quotient algebra X/ρ is mighty.

Proof. Put
$$n = 1$$
 in Theorem 5.9.

A *BE*-algebra X is said to be *n*-fold mighty if it satisfies the equality $((x^n * y) * y) * x = y * x$ for all $x, y \in X$. Note that, in an *n*-fold mighty *BE*-algebra, the notion of filters, *n*-fold mighty filters, and weak *n*-fold mighty filters is coincides.

Proposition 5.11. If X is an n-fold mighty BE-algebra, then $(x^n * y) * y \le (y * x) * x$ for all $x, y \in X$.

Proof. Let X be an n-fold mighty BE-algebra. Then

$$((x^n * y) * y) * ((y * x) * x) = (y * x) * (((x^n * y) * y) * x) = (y * x) * (y * x) = 1$$
for all $x, y \in X$. Hence $(x^n * y) * y \le (y * x) * x$ for all $x, y \in X$. \Box

Proposition 5.12. Let X be a transitive *BE*-algebra. Then the following are equivalent.

- (i) $(x^n * y) * y \le (y * x) * x, \forall x, y \in X.$
- (ii) $x^n * z \le y * z, z \le x \Rightarrow y \le x$.

- (iii) $x^n * z \le y * z, z \le x, y \Rightarrow y \le x.$
- (iv) $y \le x \Rightarrow (x^n * y) * y \le x$.

Proof. (i) \Rightarrow (ii) Let $x, y, z \in X$ be such that $x^n * z \le y * z$ and $z \le x$. It follows from (i) that

$$1 = (x^n * z) * (y * z) = y * ((x^n * z) * z) \le y * ((z * x) * x) = y * (1 * x) = y * x.$$

Hence y * x = 1, i.e., $y \le x$.

(ii) \Rightarrow (iii) Trivial. (iii) \Rightarrow (iv) Let $x, y \in X$ be

(iii) \Rightarrow (iv) Let $x, y \in X$ be such that $y \leq x$. Note that $y \leq (x^n * y) * y$ and $x^n * y \leq ((x^n * y) * y) * y$. It follows from (iii) that $(x^n * y) * y \leq x$. (iv) \Rightarrow (i) Since $x \leq (y * x) * x$, we have $((y * x) * x)^n * y \leq x^n * y$ by the mathematical induction. Since $y \leq (y * x) * x$, it follows from (iv) that $(x^n * y) * y \leq (((y * x) * x)^n * y) * y \leq (y * x) * x$. This completes the proof. \Box

Proposition 5.13. If a *BE*-algebra X is *n*-fold mighty, then its trivial filter $\{1\}$ is *n*-fold mighty.

Proof. Straightforward.

Theorem 5.14. Every *n*-fold mighty filter of a transitive BE-algebra X is a weak *n*-fold mighty filter of X.

Proof. Let F be an *n*-fold mighty filter of a transitive BE-algebra X. Then X/ρ is *n*-fold mighty. Let $x, y \in X$ be such that $(y^n * x) * x \in F$. Using Proposition 5.11, we have

$$\begin{split} [(x*y)*y]_{\rho} =& ([x]_{\rho}*'[y]_{\rho})*'[y]_{\rho} \\ \geq & ([y]_{\rho}^{n}*'[x]_{\rho})*'[x]_{\rho} \\ =& [(y^{n}*x)*x]_{\rho} = [1]_{\rho}, \end{split}$$

and so $[(x * y) * y]_{\rho} = [1]_{\rho}$, i.e, $(x * y) * y \in F$. It follows from Theorem 5.4(ii) that F is a weak *n*-fold mighty filter of X.

References

- S. S. Ahn, Y. U. Cho and C. H. Park, Vague quick ideals of BCK/BCI-algebras, Honam Math. J. 30 (2008), 65-74.
- [2] S. S. Ahn and J. M. Ko, On Vague filters in BE-algebras, Commun. Korean Math. Soc. 26 (2011), 417-425.
- [3] R. Biswas, Vague groups, Internat. J. Comput. Cognition 4 (2006), 20-23.
- [4] W. L. Gau and D. J. Buehrer, Vague setsd, IEEE Transactions on Systems, Man and Cybernetics 23 (1993), 610-614.
- [5] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Sci. Math. Jpn. 23 (1978), 1-26.

Mighty filters in BE-algebras

- [6] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [7] Y. B. Jun and C. H. Park, Vague ideals of subtraction algebra, Int. Math. Forum. 2 (2007), 2919-2926.
- [8] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), 113-116.
- K. L. Lee, K. S. So and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 15 (2008), 297-308.
- [10] B. L. Meng, On filters in BE-algebras, Sci. Math. Japn. 71(2010), 201-207.
- [11] C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Informatics 26 (2008), 427-436.
- [12] L. A. Zadeh, Fuzzy sets, Inform. Control 56 (2008), 338-353.

Hye Ran Lee Department of Mathematics Education, Dongguk University, Seoul, 100-715 Korea. *E-mail*: hey-ran10@hanmail.net

Sun Shin Ahn Department of Mathematics Education, Dongguk University, Seoul, 100-715 Korea. *E-mail*: sunshine@dongguk.edu