DOI QR코드

DOI QR Code

Preparation of C60 Nanowhiskers/WO3 Nanocomposites and Photocatalytic Degradation of Organic Dyes

  • Kim, Keun Hyung (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2015.04.29
  • Accepted : 2015.05.22
  • Published : 2015.06.30

Abstract

$C_{60}$ nanowhiskers were synthesized from $C_{60}$ by liquid-liquid interfacial precipitation (LLIP) using $C_{60}$-saturated toluene and isopropyl alcohol. The $WO_3$ nanoparticles were synthesized by adding $3.8{\times}10^{-4}$ mole amount of ammonium metatungstate hydrate ($H_{26}N_6O_{40}W_{12}{\cdot}H_2O$) to 500 ml of distilled water, and the resulting solution was heated on a hot plate for 4 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were prepared with $C_{60}$ nanowhiskers and $WO_3$ nanoparticles in an electric furnace at $700^{\circ}C$ in an argon gas atmosphere for 2 h. The $C_{60}$ nanowhiskers/$WO_3$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectroscopy was used to evaluate the performance of the $C_{60}$ nanowhiskers/$WO_3$ nanocomposites as a photocatalyst in the degradation of organic dyes, such as methylene blue (MB) and brilliant green (BG) under ultraviolet light (254 nm).

Keywords

References

  1. A. K. Jain, V. K. Gupta, A. Bhatnagar, and Suhas, "A Comparative Study of Adsorbents Prepared from Industrial Wastes for Removal of Dyes", Sep. Sci. Technol., 38, 463 (2003). https://doi.org/10.1081/SS-120016585
  2. V. K. Gupta, I. Ali, and V. K. Saini, "Defluoridation of wastewaters using waste carbon slurry", Water Res., 41, 3307 (2007). https://doi.org/10.1016/j.watres.2007.04.029
  3. V. K. Gupta, A. Rastogi, and A. Nayak, "Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models", J. Colloid Interface Sci., 342, 533 (2010). https://doi.org/10.1016/j.jcis.2009.10.074
  4. A. Mittal, J. Mittal, A. Malviya, D. Kaur, and V. K. Gupta, "Adsorption of hazardous dye crystal violet from wastewater by waste materials", J. Colloid Interface Sci., 343, 463 (2010). https://doi.org/10.1016/j.jcis.2009.11.060
  5. V. K. Gupta, R. Jain, and S. Varshney, "Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents", J. Colloid Interface Sci., 312, 292 (2007). https://doi.org/10.1016/j.jcis.2007.03.054
  6. V. K. Gupta, A. Mittal, A. Malviya, and J. Mittal, "Adsorption of carmoisine A from wastewater using waste materials-Bottom ash and deoiled soya", J. Colloid Interface Sci., 335, 24 (2009). https://doi.org/10.1016/j.jcis.2009.03.056
  7. K. Gupta, R. Jain, and S. Varshney, "Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk-An agricultural waste", J. Hazard. Mater., 142, 443 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.048
  8. V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, and A. Nayak, "A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113", J. Hazard. Mater., 186, 891 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.091
  9. V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, "Adsorption of a hazardous dye erythrosine over hen feathers", J. Colloid Interface Sci., 304, 52 (2006). https://doi.org/10.1016/j.jcis.2006.08.032
  10. Y. Wang, J. Lin, R. Zong, J. He, and Y. Zhu, "Enhanced photoelectric catalytic degradation of methylene blue via $TiO_2$ nanotube arrays hybridized with graphite-like carbon", J. Mol. Catal. A Chem., 349, 13 (2011). https://doi.org/10.1016/j.molcata.2011.08.020
  11. T. A. Saleh, S. Agarwal, and V. K. Gupta, "Synthesis of MWCNT/$MnO_2$ and their application for simultaneous oxidation of arsenite and sorption of arsenate", Appl. Catal. B, 106, 46 (2011).
  12. K. Miyazawa, Y. Kuwasaki, A. Obayashi, and M. Kuwabara, "$C_{60}$ Nanowhiskers Formed by the Liquid-liquid Interfacial Precipitation Method", J. Mater. Res., 17, 83 (2002). https://doi.org/10.1557/JMR.2002.0014
  13. K. Miyazawa, K. Hamamoto, S. Nagata, and T. Suga, "Structural investigation of the $C_{60}/C_{70}$ whiskers fabricated by forming liquid-liquid interfaces of toluene with dissolved $C_{60}/C_{70}$ and isopropyl alcohol", J. Mater. Res., 18, 1096 (2003). https://doi.org/10.1557/JMR.2003.0151
  14. K. Miyazawa, A. Obayashi, and M. Kuwabara, "$C_{60}$ Nanowhiskers in a Mixture of Lead Zirconate Titanate Sol-"$C_{60}$ Toluene Solution", J. Am. Ceram. Soc., 84, 3037 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01133.x
  15. K. Miyazawa, Y. Yuwasaki, K. Hamamoto, S. Nagata, A. Obatashi, and M. Kuwabara, "Structural characterization of $C_{60}$ nanowhiskers formed by the liquid/liquid interfacial precipitation method", Surf. Interface Anal., 35, 117 (2003). https://doi.org/10.1002/sia.1506
  16. Y. Yoshida, "Scanning Electron Microscope Images of $C_{60}$ Whiskers", Jpn. J. Appl. Phys., 31, L505 (1992). https://doi.org/10.1143/JJAP.31.L505
  17. R. M. Fleming, A. R. Kortan, B. Hessen, T. Siegrist, F. A. Thiel, P. Marsh, R. C. Haddon, R. Tycko, G. Dabbagh, M. L. Kaplan, and A. M. Mujsce, "Pseudotenfold symmetry in pentane- solvated $C_{60}$ and $C_{70}$", Phys. Rev. B, 44, 888 (1991). https://doi.org/10.1103/PhysRevB.44.888
  18. S. Bae, E. Shim, J. Yoon, and H. Joo, "Enzymatic hydrogen production by light-sensitized anodized tubular $TiO_2$ photoanode", Sol. Energ. Mat. Sol. C, 92, 402 (2008). https://doi.org/10.1016/j.solmat.2007.09.019
  19. L. Q. Jing, S. D. Li, S. Song, L. P. Xue, and H. G. Fu, "Investigation on the electron transfer between anatase and rutile in nano-sized $TiO_2$ by means of surface photovoltage technique and its effects on the photocatalytic activity", Sol. Energ. Mat. Sol. C, 92, 1030 (2008). https://doi.org/10.1016/j.solmat.2008.03.003
  20. W. J. Li and Z. W. Fu, "Nanostructured $WO_3$ thin film as a new anode material for lithium-ion batteries", Appl. Surf. Sci., 256, 2447 (2010). https://doi.org/10.1016/j.apsusc.2009.10.085
  21. D. Chen and J. Ye, "Hierarchical $WO_3$ Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties", Adv. Funct. Mater., 18, 1922 (2008). https://doi.org/10.1002/adfm.200701468
  22. S. K. Deb, "Opportunities and challenges of electrochromic phenomena in transition metal oxides", Sol. Energ. Mat. Sol. C, 25, 327 (1992). https://doi.org/10.1016/0927-0248(92)90077-3
  23. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, and A. Fujishima, "Energy Storage of $TiO_2$-$WO_3$ Photocatalysis Systems in the Gas Phase", Langmuir, 18, 7777 (2002). https://doi.org/10.1021/la026011i
  24. P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh, Y. Ohko, and A. Fujishima, "Charge-discharge behavior of $TiO_2$-$WO_3$ photocatalysis systems with energy storage ability", Phys. Chem. Chem. Phys., 5, 3234 (2003). https://doi.org/10.1039/b304181f
  25. X. H. Zhang, X. H. Lu, Y.Q. Shen, J. B. Han, L. Y. Yuan, L. Gong, Z. Xu, X. D. Bai, M. Wei, Y. X. Tong, Y. H. Gao, J. Chen, J. Zhou, and Z. L. Wang, "Three-dimensional $WO_3$ nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis", Chem. Commun., 47, 5804 (2011). https://doi.org/10.1039/c1cc10389j
  26. M. Qamar, Q. Drmosh, M. I. Ahmed, M. Qamaruddin, and Z. H. Yamani, "Enhanced Photoelectro-chemical and photocatalytic activity of $WO_3$-surface modified $TiO_2$ thin film", Nanoscale Res. Lett., 10, 54 (2015). https://doi.org/10.1186/s11671-015-0745-2
  27. O. Arutanti, A. B. D. Nandiyanto, T. Ogi , T. O. Kim, and K. Okuyama, "Influences of Porous Structurization and Pt Addition on the Improvement of Photocatalytic Performance of $WO_3$ Particles", ACS Appl. Mater. Interfaces, 7(5), 3009 (2015). https://doi.org/10.1021/am507935j
  28. B. Palanisamy, C. M. Babu, B. Sundaravel, K. Shanthi, and V. Murugesan, "Photocatalytic Degradation of Aqueous Alachlor with Visible-Light Active Mesoporous $WO_3$/$TiO_2$ ", Sci. Adv. Mater., 7(4),746 (2015). https://doi.org/10.1166/sam.2015.1914