DOI QR코드

DOI QR Code

Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries

고출력 리튬이온 이차전지 음극재용 피치/코크스/천연흑연 복합재의 제조 및 전기화학적 특성평가

  • Ko, Hyo Joon (Dept. of Materials Science and Engineering, Myongji University) ;
  • Lim, Yun-Soo (Dept. of Materials Science and Engineering, Myongji University) ;
  • Kim, Myung-Soo (Dept. of Chemical Engineering, Myongji University)
  • Received : 2015.04.02
  • Accepted : 2015.05.27
  • Published : 2015.06.27

Abstract

In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PC-NG). Although natural graphite has a good reversible capacity, it has disadvaantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at $1000^{\circ}C$ (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at $800{\sim}1200^{\circ}C$. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at $1000^{\circ}C$ showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.

Keywords

References

  1. M. Shao, J. Power Sources, 270, 475 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.123
  2. Q. Cheng, R. Yuge, K. Nakahara, N. Tamura and S. Miyamoto, J. Power Sources, 284, 258 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.036
  3. A. Kraytsberg and Y. Ein-Eli, Adv. Energy Mater., 2(8), 922 (2012). https://doi.org/10.1002/aenm.201200068
  4. M. Endo, C. Kim, K. Nishimura, T. Fujino and K. Miyashita, Carbon, 38(2), 183 (2000). https://doi.org/10.1016/S0008-6223(99)00141-4
  5. G. A Nazri and G. Pistoia, Lithium Batteries Sci. Technol., p.112, Kluwer, Netherlands (2004).
  6. W. Guoping, Z. Bolan, Y. Min, X. Xiaoluo, Q. Meizheng and Y. Zuolong, Solid State Ionics, 176(9-10), 905 (2012). https://doi.org/10.1016/j.ssi.2004.11.009
  7. T. Plack, V. Siozios, R. Schmitz, S. F. Lux, P. Bieker, C. Colle, H. W. Meyer, S. Passerini and M. Winter, J. Power Sources, 200, 83 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.085
  8. D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. Ein-Eli, Electrochim. Acta, 45(1-2), 67 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2
  9. J. H. Ryu, E. Y. Oh and S. M. Oh, J. Korean Electrochem. Soc., 7(1), 32 (2004). https://doi.org/10.5229/JKES.2004.7.1.032
  10. H. Sun, X. He, J. Ren, J. Li, C. Jiang and C. Wan, Electrochim. Acta, 52(13), 4312 (2007). https://doi.org/10.1016/j.electacta.2006.12.012
  11. K. Y. Sheem, E. H. Song and Y. H. Lee, Electrochim. Acta, 78, 223 (2012). https://doi.org/10.1016/j.electacta.2012.05.135
  12. E. Buiel and J. R. Dahn, Electrochim. Acta, 45(1-2), 121 (1999). https://doi.org/10.1016/S0013-4686(99)00198-X
  13. Y. Sato, K. Tanuma, T. Takayama, K. Kobayakawa, T. Kawai and A. Yokoyama, J. Power Sources, 97-98, 165 (2001). https://doi.org/10.1016/S0378-7753(01)00677-2
  14. T. Nakajima, S. Shibata, K. Naga, Y. Ohzawa, A. Tressaud, E. Durand, H. Groult and F. Warmont, J. Power Sources, 168(1), 265 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.008
  15. T. Takamura, K. Sumiya, J. Suzuki, C. Yamada and K. Sekine, J. Power Sources, 81-82, 368 (1999). https://doi.org/10.1016/S0378-7753(98)00220-1
  16. Y. Wu, C. Jiang, C. Wan and E. Tsuchida, J. Mater. Chem., 11(4), 1233 (2001) https://doi.org/10.1039/b007247h
  17. Y. Wu, C. Jiang, C. Wan and R. Holze, J. Power Sources, 111(2), 329 (2002). https://doi.org/10.1016/S0378-7753(02)00349-X
  18. J. Drofenik, M. Gaberscek, R. Dominko, M. Bele and S. Pejovnik, J. Power Sources, 94(1), 97 (2001). https://doi.org/10.1016/S0378-7753(00)00651-0
  19. M. Bele, M. Gaberscek, R. Dominko, J. Drofenik, K. Zupan, P. Komac, K. Kocevar, I. Musevic and S. Pejovnik, Carbon, 40(7), 1117 (2002). https://doi.org/10.1016/S0008-6223(01)00257-3
  20. M. Gaberscek, M. Bele, J. Drofenik, R. Dominko and S. Pejovnik, J. Power Sources, 97-98, 67 (2001). https://doi.org/10.1016/S0378-7753(01)00589-4
  21. L. Yu, K. J. Kim, D. Y. Park, M. S. Kim, K. I. Kim and Y. S. Lim, Carbon Lett., 9(3), 210 (2008). https://doi.org/10.5714/CL.2008.9.3.210
  22. J. S. Kim, W. Y. Yoon, K. S. Yoo, G. S. Park, C. W. Lee, Y. Murakami and D. Shindo, J. Power Sources, 104(2), 175 (2002). https://doi.org/10.1016/S0378-7753(01)00909-0
  23. Y. Sato, Y. Kikuchi, T. Nakano, G. Okuno, K. Kobayakawa, T. Kawai and A. Yokoyama, J. Power Sources, 81-82, 182 (1999). https://doi.org/10.1016/S0378-7753(99)00191-3
  24. D. Y. Park, L. Yu, Y. S. Lim and M. S. Kim, J. Ind. Eng. Chem., 15(4), 588 (2009). https://doi.org/10.1016/j.jiec.2009.03.001
  25. T. Zheng, W. R. Mckinnon and J. R. Dahn, J. Electrochem. Soc., 143, 2137 (1996). https://doi.org/10.1149/1.1836972
  26. P. Papanek, M. Radosavljevic and J. E. Fischer, Chem. Mater., 8(7), 1519 (1996). https://doi.org/10.1021/cm960100x
  27. Y. Liu, J. S. Xue, T. Zheng and J. R. Dahn, Carbon, 34(2), 193 (1996). https://doi.org/10.1016/0008-6223(96)00177-7
  28. T. Zheng and J. R. Dahn, J. Power sources, 68, 201 (1997). https://doi.org/10.1016/S0378-7753(96)02552-9

Cited by

  1. Treatment vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1053
  2. Coalescence of mesophase spheres and microstructure of graphitic carbon revealed by scanning electron microscopy vol.52, pp.21, 2017, https://doi.org/10.1007/s10853-017-1364-3