DOI QR코드

DOI QR Code

Aerial Video Summarization Approach based on Sensor Operation Mode for Real-time Context Recognition

실시간 상황 인식을 위한 센서 운용 모드 기반 항공 영상 요약 기법

  • Lee, Jun-Pyo (School of Film and Media Arts, Seoul Institute of the Arts)
  • 이준표 (서울예술대학교 영상학부)
  • Received : 2015.01.07
  • Accepted : 2015.05.19
  • Published : 2015.06.30

Abstract

An Aerial video summarization is not only the key to effective browsing video within a limited time, but also an embedded cue to efficiently congregative situation awareness acquired by unmanned aerial vehicle. Different with previous works, we utilize sensor operation mode of unmanned aerial vehicle, which is global, local, and focused surveillance mode in order for accurately summarizing the aerial video considering flight and surveillance/reconnaissance environments. In focused mode, we propose the moving-react tracking method which utilizes the partitioning motion vector and spatiotemporal saliency map to detect and track the interest moving object continuously. In our simulation result, the key frames are correctly detected for aerial video summarization according to the sensor operation mode of aerial vehicle and finally, we verify the efficiency of video summarization using the proposed mothed.

항공 영상 요약은 무인항공기를 통해 획득된 전체 영상의 내용을 제한된 시간 내에 효과적으로 브라우징 함으로써 감시 정찰 지역에 대한 상황 인식을 가능하게 하는 기술이다. 항공 영상의 정확한 요약을 수행하기 위해 본 논문에서는 센서 운용 모드를 집중감시, 전역감시 그리고 구역감시모드로 구분하고 해당 센서 운용 모드의 특성을 고려하여 항공 영상 요약을 수행한다. 특히 집중감시 모드에서의 영상 요약은 화면 내 움직임이 있는 관심 객체의 지속적인 추적을 기반으로 수행되며 이를 위해 본 논문에서는 지역 움직임 벡터(partitioning motion vector)와 해당 벡터가 발생한 영역에서의 시공간적 중요도 지도(spatiotemporal saliency map)를 활용한 움직임 반응 추적 기법을 제안한다. 제안하는 알고리즘의 효율성과 적합성을 확인하기 위해 실 항공 영상을 대상으로 실험을 수행하였다. 도출된 실험 결과를 통해 제안하는 방법은 전체 항공 영상에서의 영상 요약을 위해 센서 운용 모드에 따라 정확한 대표 프레임을 검출하였으며 이에 따라 대용량의 무인항공기 획득 영상이 효과적으로 요약될 수 있음을 확인하였다.

Keywords

References

  1. Sang-Un Lee, "Polynomial Time Algorithm for Aircraft Landing Problem," Journal of the Korea Society of Computer and Information, Vol. 19, No. 9, pp. 161-168, Sep. 2014. https://doi.org/10.9708/jksci.2014.19.9.161
  2. Ergezer, H. and Leblebicioglu, K, "3D Path Planning for UAVs for Maximum Information Collection," IEEE Trans. on Aerospace and Electronic Systems, Vol. 49, pp. 502-520, May 2013. https://doi.org/10.1109/TAES.2013.6404117
  3. Seungwoo Chun, Woonhyuk Baek, and Jongpil La, "A Study on HILS for Performance Analysis of Airborne EOTS for Aircraft," Journal of the Korea Society of Computer and Information, Vol. 19, No. 9, pp. 55-64, Dec. 2013. https://doi.org/10.9708/JKSCI.2014.19.9.055
  4. Krishnamoorthy, K., Casbeer, D., Chandler, P., Pachter, M., and Darbha, S., "UAV search & capture of a moving ground target under delayed information," Proc. of the Conf. on Decision and Control, pp. 3092-3097, Dec. 2012 .
  5. Shunguang Wu, Das, S., Yi Tan, Eledath, J., and Chaudhry, A.Z., "Multiple target tracking by integrating track refinement and data association," Proc. of the Conf. on Information Fusion, pp. 1254-1260, July 2012.
  6. Jinman Kang, Gajera, K., Cohen, I., and Medioni, G., "Detection and Tracking of Moving Objects from Overlapping EO and IR Sensors," Proc. of the Conf. on Computer Vision and Pattern Recognition Workshop, pp. 123, June 2004.
  7. Sujatha, C. and Mudenagudi, U., "A Study on Keyframe Extraction Methods for Video Summary," Proc. of the Computational Intelligence and Communication Networks, pp. 73-77, Oct. 2011.
  8. Yanwei Fu, Yanwen Guo, Yanshu Zhu, Feng Liu, Chuanming Song, and Zhi-Hua Zhou, "Multi-View Video Summarization," IEEE Trans. on Multimedia, Vol. 12, pp. 717-729, Nov. 2010. https://doi.org/10.1109/TMM.2010.2052025
  9. Changick Kim and Jenq-Neng Hwang, "Object-based video abstraction for video surveillance systems," IEEE Trans. on Circuits and Systems for Video Technology, Vol. 12, pp. 1128-1138, Dec. 2002. https://doi.org/10.1109/TCSVT.2002.806813
  10. Genliang Guan, Zhiyong Wang, Kaimin Yu, and Shaohui Mei, "Video Summarization with Global and Local Features," Proc. of the Conf. on Multimedia and Expo Workshops, pp. 9-13, July 2012.
  11. S. A. Chatzichistofis and Y. S. Boutalis, "CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval," Proc. of the Conf. on Computer Vision System, pp. 1-6, 2008.
  12. D. G. Lowe, "Distinctive image feature from scale-invariant keypoints," Int. Journal of Computer Vision, Vol. 60, pp. 91-110, Nov. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  13. Yoshitaka, A. and Sawada, K., "Personalized Video Summarization Based on Behavior of Viewer," Proc. of the Signal Image Technology and Internet Based Systems, pp. 661-667, Nov. 2012.
  14. Ferreira, L., Cruz, L., and Assuncao, P., "Efficient scalable coding of video summaries using dynamic GOP structures," Proc. of the Conf. on Computer as a Tool, pp. 1-4, April 2011.
  15. Kanagalakshmi, K. and Chandra, E., "Performance evaluation of filters in noise removal of fingerprint image," Proc. of the Conf. on Electronics Computer Technology, pp. 117-121, April 2011.
  16. Linfeng Xu, Hongliang Li, and Zhengning Wang, "Saliency detection from joint embedding of spatial and color cues," Proc. of Symp. on Circuits and Systems, pp. 2673-2676, May 2012.