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ABSTRACT 

A classification task requires an exponentially growing amount of computation time and number of observations as 
the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of 
observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance 
than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket dis-
covery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable 
set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a 
Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and 
continuous data sets, and compare their classification performance with other feature selection methods using well-
known classifiers. 
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1.  INTRODUCTION 

A classification problem is to predict a target vari-
able of an observation on the basis of the features in-
volved. When dealing with this problem, one of the 
most important things to consider is dimensionality re-
duction. If the number of features increases, the accu-
racy of classification generally increases also. However, 
this applies only when the number of observations is 
infinitely many. Exponential growth in the number of 
observations is required to accurately estimate a func-
tion for the target variable as the dimension increases. It 
is called the curse of dimensionality. In the actual data, 
however, since there are a finite number of observations, 
the accuracy of classification may decrease from the 
moment that the number of features exceeds a certain 
threshold because features, which are less relevant to the 
target variable, play a role in disturbing the classifica-
tion in a finite number of observations. Successful re-

duction of dimensionality can achieve higher classifica-
tion accuracy than using the entire features. Moreover, 
dimensionality reduction brings additional benefits such 
as reducing the time and memory complexity. Research 
on dimensionality reduction has been recognized as sig-
nificant and it has been carried out very actively. 

Two basic types of dimensionality reduction include 
feature extraction and feature selection. Feature extrac-
tion is transforming the existing features into a lower 
dimensional space. On the other hand, feature selection 
is selecting a subset of the existing features without a 
transformation. The representative techniques of feature 
extraction are Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) which assume the 
linearity of the function. Also, nonlinear methods using 
kernels and other varieties are available such as ISO 
maps. Feature selection is divided into three categories – 
filter methods, wrapper methods, and embedded meth-
ods (Guyon and Elisseeff, 2003; Saeys et al., 2005). 

Industrial Engineering  
& Management Systems 
Vol 14, No 2, June 2015, pp.210-219 http://dx.doi.org/10.7232/iems.2015.14.2.210
ISSN 1598-7248│EISSN 2234-6473│ © 2015 KIIE



Classification of High Dimensionality Data through Feature Selection Using Markov Blanket 
Vol 14, No 2, June 2015, pp.210-219, © 2015 KIIE 211
  

 

Each method has its own advantages and disadvantages. 
In this paper, we focus on the filter methods which are 
relatively simple and fast in computation. Furthermore, 
these methods can be tested by any classifier since fea-
ture selection task is executed independently of the clas-
sifier.  

The Markov blanket feature selection method be-
longs to a filter method. Koller and Sahami (1996) de-
fined that the Markov blanket of a target variable is the 
minimal set of features conditioned on which all other 
features are independent of the target variable in a prob-
abilistic graphical model. In other words, the Markov 
blanket of a target variable is the minimum information 
to explain the target variable fully. Based on this, the 
Markov blanket can be utilized as a feature selection 
method when the target variable is a class variable. 

The usefulness of Markov blanket feature selection 
has been demonstrated in a few papers (Zeng et al., 
2009), but the classification performance has not been 
reported extensively. In this paper, we compare three al-
gorithms of Markov blanket discovery to test how they 
perform in classifying high-dimensional categorical and 
continuous data. These algorithms include Incremental 
Association Markov Blanket (IAMB) (Tsamardinos et 
al., 2003a), Max-Min Markov Blanket (MMMB) (Tsa-
mardinos et al., 2003b), and HITON Markov Blanket 
(HITON-MB) (Aliferis et al., 2003a). Common classifi-
ers are considered such as Naïve Bayes (NB), support 
vector machine (SVM), and k-nearest neighborhood 
(KNN). When comparing the classification performance, 
we also include two other feature selection methods: 
Correlation–based Feature Selection (CFS) (Hall, 1999) 
and two versions of Minimum Redundancy Maximum 
Relevance (MRMR) method (Ding and Peng, 2005). 

In Section 2, Markov blanket is defined in the con-
text of a probabilistic graphical model called a Bayesian 
network. Then in Section 3, we introduce three Markov 
blanket discovery algorithms for feature selection. Sec-
tion 4 provides a description of two other feature selec-
tion methods which are compared with Markov blanket 
algorithms, and describes several classifiers which are 
used in this paper. In Section 5, we report the classifica-
tion performance of each feature selection method com-
bined with each classifier, which is applied to four cate-
gorical data sets and four continuous data sets. In Sec-
tion 6 we conclude the paper with a summary of obser-
vations from the experiments.  

2.  BAYESIAN NETWORK AND MARKOV 
BLANKET 

A Bayesian network is a probabilistic graphical 
model that compactly represents a joint probability dis-
tribution P over a set of random variables U via a direc-
ted acyclic graph (DAG) G. Its nodes represent random 
variables and the edges involve conditional dependen-
cies between nodes. If the Markov condition property 

holds in a Bayesian network, then a node is independent 
from all nodes other than its descendants when condi-
tioned on its parents (Pearl, 1988). Therefore, a Bayes-
ian network consists of a qualitative part in the form of a 
DAG and a quantitative part in the form of conditional 
probabilities (Van Harmelen et al., 2008).  

All Markov blanket discovery algorithms begin with 
two basic assumptions. The first is correctness of a con-
ditional independence test, which means that we always 
obtain the correct result by the conditional independence 
test. The second assumption is faithfulness between a 
Bayesian network G and a joint distribution P, which 
indicates that every conditional independence entailed 
by the graph G and the Markov condition have to be 
presented in P (Fu and Desmarais, 2008; Fu and Des-
marais, 2010; Pearl, 1988). 

Now, the Markov blanket is defined formally as 
follows (Fu and Desmarais, 2010): 

 
• Definition 1 (Markov Blanket) 
Given the faithfulness assumption, from the perspective 
of the probability, the Markov Blanket of a target vari-
able T, denoted by MB(T), is the minimal set of vari-
ables conditioned on which all other variables F are in-
dependent of T. In the graphical perspective, the Markov 
blanket of T is the union of parent, child (PC), and par-
ent of children, spouse (SP), nodes of T. For example, in 
Figure 1, the parent and child nodes of T are PC(T) = {A, 
B, C}, and the spouse node is SP(T) = {D}. So, the 
Markov blanket for T is MB(T) = {A, B, C, D}. It means 
that nodes E, F, and G are independent of T conditioned 
on MB(T) (Fu and Desmarais, 2010). 

3.  MARKOV BLANKET DISCOVERY 
ALGORITHMS AS FEATURE 
SELECTION METHODS 

In this section, three algorithms for Markov blanket 
discovery are introduced. In the algorithm, ( )⊥X Y Z  
represents that X and Y are independent given a node set 
of Z and ( , )dep X Y Z  is the degree (or score) of the 
dependence between X and Y given Z which is p-value 
of a conditional independence test. In the case of cate-

 
Figure 1. An example Bayesian network. 
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gorical variables, all of the Markov blanket discovery 
algorithms implement a G2 conditional independence 
test (McDonald, 2009). On the other hand, in the case of 
continuous variables, they conduct a conditional inde-
pendence test based on Fisher’s z-transformation of the 
partial correlation coefficient. 

3.1 Incremental Association Markov Blanket 

The IAMB algorithm (Tsamardinos et al., 2003a) is 
the basic algorithm to discover the Markov blanket. Fig-
ure 2 is the pseudo code of IAMB. It is a grow-and-
shrink approach that consists of two phases. In the first 
grow phase, nodes determined to be dependent on the 
target node are added to MB through the independence 
test (lines 2-6). In the next shrink phase, any node 
among MB determined to be independent of the target 
node is removed from MB (line 7-9). 

Tsamardinos et al. (2003a) proved that IAMB sat-
isfies soundness (correctness) under the faithfulness 
assumption. In order to achieve a reliable result from the 
algorithm, independence tests have to be correct, which 
means that they conclude (in)dependence if and only if 
the (in)dependence holds in P. However, IAMB has a 
drawback in terms of the data efficiency (Peña et al., 
2007). IAMB is known to give a reliable result in dis-
covering MB when the amount of instances is at least 
five times the degree of freedom in the test. In other 
words, IAMB requires that the number of instances in-
creases exponentially according to the size of MB be-
cause the degree of freedom in the test is exponentially 
increasing in the size of the conditioning set, and the 
size of the conditioning set is the same as MB in IAMB. 

3.2 Max-Min Markov Blanket 

The MMMB algorithm (Tsamardinos et al., 2003b) 
tries to overcome the data inefficiency of IAMB while 

still being scalable given the faithfulness assumption. 
MMMB is also divided into two phases, but it takes the 
divide-and-conquer approach which is different from 
IAMB in terms of using topological information. At the 
first phase (called MMPC), parent and child nodes of T 
are identified, and then the spouse nodes of T are to be 
found in MMMB phase. Not all nodes, although deter-
mined to be dependent on the target node in the test, 
may be included into the MB. Figure 3 is the pseudo 
code of MMMB. However, as stated in Pena et al. 
(2007), the MMMB algorithm does not guarantee the 
correct output under the faithfulness, but it works well 
in practical applications. Compared to IAMB, MMMB 
is slow because MMPC considers every subset of the 
output as the conditioning set for the tests (line 4 in 
MMPC (T)). 

3.3 HITON Markov Blanket 

The HITON-MB algorithm (Aliferis et al., 2003a) 
is similar to MMMB in terms of data efficiency, sound-

 

IAMB(T) 
/* add true positives to MB */ 
1    =∅MB  
2    repeat 
3   { }( ) ( )\ \: max ,

∈
= X U MB TY arg dep T X MB  

4   if ⊥T Y MB  then 

5  { }= ∪MB MB Y   
6   until MB does not change 
/* remove false positives from MB */ 
7   for each ∈X MB  do 
8 if { }( )\⊥T X MB X  then 

9   { }\=MB MB X   
10  return MB  

Figure 2. IAMB algorithm. 

 

MMPC(T) 
/* add true positives to PC */ 
1    =∅PC  
2    repeat 
3  for each { }( )\ \∈X U MB T  do 

4     Sep[X] = ( ): max ,⊆X PCarg dep T X Z  

5         { }( ) ( )\ \: max ,
∈

= ⎡ ⎤⎣ ⎦X U PC TY arg dep T X Sep X  

6  if ⊥T ⎡ ⎤⎣ ⎦Y Sep Y  then 

7     { }= ∪PC PC Y  
8    until PC  does not change 
/* remove false positives from PC */ 
9    for each ∈X PC  do 
10      if ⊥T X Z  for some { }⊆ PC XZ \  then 

11        { }= ∪PC PC X  
12   return PC  

MMMB(T) 
/* add true positives to MB */ 
1    PC = MMPC(T) 
2    MB = PC 
3    CanMB = ( ) { }( ) \∈∪X PCPC MMPC X T  
/* add more true positives to MB */ 
4    for each \∈X CanMB PC  do 
5      find any Z such that ⊥T X Z  and , ∉T X Z  
6      for each ∈Y PC  do 
7    if ⊥T { }∪X YZ  then 
8      MB = MB∪{X} 
9    return MB  

Figure 3. MMMB algorithm. 
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ness, and time complexity. Like MMMB, HITON-MB 
takes a divide-and-conquer approach to identifying MB: 
first finding PC and then, finding SP. Figure 4 is the 
pseudo code of HITON-MB. The algorithm proceeds in 
the same manner as MMMB except that it combines 
addition and removal steps in a same loop for the pur-
pose of removing false positives as early as possible to 
make the conditioning set small. However, Pena et al. 
(2007) proved that HITON-MB does not guarantee the 
correct output under the faithfulness. Since HITON-MB 
uses the topology of G in the same manner as MMMB, 
it returns similar results with MMMB.  

4.  OTHER FEATURE SELECTION 
METHODS AND CLASSIFIERS 
UNDER CONSIDERATION 

In this section, first, we briefly describe the other 
feature selection methods which will be compared with 
Markov blanket feature selection methods described in 
Section 3, and then explain the commonly used classifi-
ers which are adopted in this paper for the experiment. 

4.1 Other Feature Selection Methods 

The feature selection methods to be described in 
this section are selected because these are multivariate 
filter methods which are popular in the area of bioin-
formatics. Just like the Markov blanket feature selection 
methods, these feature selection methods can be applied 
to both categorical and continuous data. 

 
4.1.1 Correlation-based Feature Selection 

CFS considers every subset of all features, which is 
based on the following philosophy: a good feature sub-
set contains features which are highly correlated with 
the target (class) variable and not redundant between them 
(Hall, 1999). Consider a subset S of all features, which 
consists of k features 1, , .kf f  Let 

i jf fr  be the correla-
tion coefficient of fi and fj and let 

icfr  be the correlation 
coefficient between the target (class) variable and fi. 
Then, the CFS is to find the subset having the following 
maximum score. 

 

( )
1 2

1 2 1
2

−

⎡ ⎤
+ + +⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ + + + +
⎢ ⎥⎣ ⎦

k

i j k k

cf cf cf
s

f f f f f f

r r r
CFS max

k r r r
  (1) 

 
CFS can be run on Weka (Hall et al., 2009) with a 

best first search strategy. Like the greedy hill climbing, 
the best first search strategy moves through the search 
space by making local changes to the current feature 
subset. However, unlike the hill climbing, if the path 
being explored begins to look less promising, the best 
first search can back-track to a more promising previous 
subset and continue the search from there. 

 
4.1.2 Minimum Redundancy Maximum Relevance 

Ding and Peng (2005) developed the MRMR me-
thod which ranks features considering their relevance to 
the class variable and redundancy within features simul-
taneously. Top ranked features have larger relevance to 
the class variable and smaller redundancy within fea-
tures, and they are regarded as more significant than 
others. Due to the ranking process, MRMR provides the 
right of choice for the number of features. MRMR 
method has two kinds of schemes to search for the next 
feature depending on the data type.  

For categorical data features, the relevance of a fea-
ture to the class variable c is evaluated by the mutual 
information value between a feature and the class vari-
able, which is denoted by I(fi, c). Mutual Information 
Difference (MID) and Mutual Information Quotient (MIQ) 
are defined, respectively, by 

 
1( , ) ( , )∈Ω ∈

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑i s jf i i jf SMID max I f c I f f

S
 (2)  

HITON-PC(T) 
1   =∅PC  
2   { }\=CanPC U T  
3    repeat 
/* add the best candidate to PC */ 
4   ( ): max ,∈= ∅X CanPCY arg dep T X  

5   { }= ∪PC PC Y  
6   CanPC => CanPC ∪{Y} 
/* remove false positives from PC */ 
7    for each ∈X PC  do 
8      if ⊥T X Z  for some { }⊆ PC XZ \  then 

9       { }=PC PC X\  
10   until CanPC is empty 
11   return PC 

HITON-MB(T) 
/* add true positives to MB */ 
1    PC = HITON-MB(T)  
2   ( ) { }( ) \∈= ∪X PCMB PC MMPC X T  
/* remove false positives from MB */ 
3   for each ∈X MB  do 
4     for each ∈Y PC  do 
5      if ⊥T X Z  for some

{ } { }( )\ , ,⊆ ∪Y U T X YZ  then 

6   { }\=MB MB X  
7    return MB  

Figure 4. HITON-MB algorithm. 
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1( , ) ( , )∈Ω ∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑i s jf i i jf SMIQ max I f c I f f

S
 (3) 

 
where the second term in the bracket is the average of 
all mutual information values between feature fi and 
other features in S which represents the redundancy of fi.  

For continuous data features, the F-statistic is used 
as a measure of relevance between a feature and the 
class variable, which has the following form (Ding and 
Peng, 2005; Ding, 2002). 

2 2( , ) ( ) /( 1) /⎡ ⎤= Σ − −⎣ ⎦i k k ik iF f c n v v K σ     (4) 

where iv  is the average across all observations in fi, ikv  
is the average of fi within the k-th class (k = 1, …, K), 
and ( )2 21) /( )⎡ ⎤= Σ − −⎣ ⎦k k kn n Kσ σ  is the pooled variance 
( kn  and 

2
kσ  are the size and the variance of the k-th 

class, respectively). For K = 2, the F statistic will reduce 
to the t statistic, with the relation F = t2. On the other 
hand, as a measure of redundancy, the absolute value of 
Pearson correlation coefficient of fi and fj, which is de-
noted by c(fi, fj), is chosen. Hence the F-test correlation 
difference (FCD) and the F-test correlation quotient 
(FCQ) can be defined as follows. 
 

1( , ) ( , )∈Ω ∈

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑i s jf i i jf SFCD max F f c c f f

S
  (5) 

1( , ) ( , )∈Ω ∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑i s jf i i jf SFCQ max F f c c f f

S
   (6) 

4.2 Classifiers under Consideration 

Classifiers described in this section are selected 
since they are commonly used and easy to implement. 
The first two classifiers are parametric methods, and the 
last classifier is nonparametric. Because the model com-
plexity of nonparametric methods is relatively high, the 
KNN may cause an over-fitting problem.  

 
4.2.1 Naïve Bayes 

The NB classifier is a simplified version of evaluat-
ing the posterior probability of each class for the classi-
fication purpose (Zhang, 2004). Suppose an observed 
instance consists of p-dimensional feature 1 2( , ,=f f f  

, ).pf  Then, using the Bayes’ rule, the posterior prob-
ability of j-th class, denoted by ( )1 2, , , ,i pp c f f f  can 
be calculated:  

( ) ( )1 2 1 2, , , , , , ( )∝j p p j jp c f f f p f f f c p c  (7)  

where 1 2( , , , )p jp f f f c  is the likelihood and ( )jp c  is 
the prior probability of each class. The goal of the Bayes’ 
rule is to find the decision boundary that every instance 
is assigned to the class with the highest posterior prob-

ability. The key assumption of the naïve Bayes is that 
conditioned on the class, the distribution of input fea-
tures 1 2, , , pf f f  is independent. Due to the assump-
tion, the likelihood can be expressed in a product form:  

 

1 2 1
( , , , ) ( )

=
∝∏ p

p j k jk
p f f f c p f c      (8)  

 
Although it is simple and straightforward to im-

plement, the NB is often well-performed, more so than 
the sophisticated classification methods.  

 

4.2.2 Support Vector Machine 
Vapnik and Cortes (1995) first invented the SVM. 

Its performance has been increasingly recognized and it 
has become one of the most powerful classification 
methods. Under p-dimensional input feature space, for 
the two-class problem, SVM seeks the two parallel hy-
perplanes which maximize the distance (or margin) be-
tween them and the (p-1)-dimensional hyperplane placed 
in the middle of the two parallel hyperplanes plays the 
role of a discriminant function. SVM is based on the 
hypothesis that the larger the margin between these par-
allel hyperplanes, the better the performance of the clas-
sifier will be. These hyperplanes can be derived by solv-
ing optimally a quadratic programming. One advantage 
of SVM is to consider a nonlinearity of data by intro-
ducing a variety of kernel functions. In this study, how-
ever, we do not use any kernel function. 

 
4.2.3 k-nearest Neighborhood 

The k-nearest neighborhood (KNN) method was 
first introduced by Fix and Hodges (1989). Since it is a 
non-parametric method for classifying an instance based 
on k closest instances, a similarity measure (Euclidean 
distance or others) is calculated between all pairs of in-
stances in a dataset. Whenever a new data point has to 
be classified, its k-closest neighbors are found from the 
training data (k being the number of neighbors) by sort-
ing the distance matrix. The most dominant class label 
in the set of neighbors is finally assigned to the new data. 
The best choice of k depends upon the data. Larger val-
ues of k reduce the effect of noise on the classification 
but make boundaries between classes less distinct. Gen-
erally, k is often chosen close to the square root of the 
data size (Fukunaga, 1990). In this paper, we change k 
from 1 to 10, and then the best result of k is recorded. 

 5.  EXPERIMENTS 

This section describes our experiments on four 
categorical data sets and four continuous data sets, and 
reports their classification performance results, at first, 
using three Markov Blanket discovery methods intro-
duced in Section 3 and three other feature selection 
methods in Section 4. Then, three classifiers, including 
naïve Bayes, support vector machine, and k-nearest 
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neighborhood, are applied to each selected feature set. 
Therefore, 18 classification models are executed for 
each data set basically. To avoid the bias between the 
training and test data, we compare each model by aver-
aging 5 runs of 5-fold cross validation. All other algo-
rithms except CFS are run in Matlab. CFS is run in 
Weka with a best first search strategy. For MB discovery 
algorithms, we used the Matlab version of Causal Ex-
plorer toolkit (Aliferis et al., 2003b). However, MMMB 
is not available for continuous data. We experimented 
on the MB feature selection methods with different sig-
nificant levels. The significant level is used for imple-
menting the conditional independence test, and it may 
result in a different output of the selected features. Since 
the MRMR method is based on ranking process, the 
number of features needs to be fixed beforehand. Two 
or three levels are considered here depending on the 
number of all features. For example, in the Audiology 
data set having a total of 69 features; 20, 10, and 5 fea-
tures are selected in MRMR to keep the balance with the 
number of selected features in MB. 

5.1 Categorical Data 

For categorical data, three data sets, Audiology, 
Promoter, and Splice, were selected from the UCI re-
pository of machine learning; and the other data set, 
Lung Cancer, is from Causality Workbench repository 
(Guyon et al., 2011). The information about the data 
sets is summarized in Table 1. The Audiology data set 

contains 69 features and one class variable divided into 
24 classes, which is to predict the auditory state. The 
Promoter data set is to determine whether it is a pro-
moter or not, using the information of gene sequences. 
The Splice data set is a type similar to the Promoter data 
set. The Lung Cancer data set is to predict lung cancer, 
using generic health status variables such as smoking 
and fatigue. 

Tables 2-5 show the classification result of each 
data set, which includes the number of features selected, 
classification accuracies of test data and those of train-
ing data (numbers in parenthesis) in percentage. The 
best performing feature selection method for each classi-
fier is marked in bold numbers. In Table 2, IAMB with 
5% significance level outperforms other feature selec-
tion methods for all classifiers with a significantly large 
gap. This result is remarkable when considering that this 
data set contains a large number of classes as many as 
24. Using only 8 features, IAMB records the best accu-
racy among the feature selection methods, and it even 
has better performance than the entire features. For this 
data set, MMMB and HITON-MB do not provide any 
MB, so the results are not reported here. This tells us 
about some drawbacks of MMMB and HITON-MB 
although they use topology information differently from 
IAMB.  

Tables 3, 4 and 5 show the similar results for Pro-
moter, Splice and Lung Cancer data sets, respectively. 
In Tables 3-5, the results based on the MB feature selec-
tion methods are generally well-performed. Sometimes 

 
Table 1. Categorical data sets for experiments 

Data set # features # observations # classes 
Audiology 69 226 24 
Promoter 57 106 2 

Splice 60 200 2 
Lung Cancer 143 100 2 

 
Table 2. Performance comparison for Audiology data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 69 63.60(77.24) 78.40(99.12) 59.91(99.54) 

0.01 13 83.74(87.93) 95.76(100.00) 89.20(100.00) 
IAMB 

0.05 8 84.25(88.69) 96.18(100.00) 94.08(100.00) 
CFS 15 64.30(71.13) 64.04(72.98) 63.34(74.81) 

5 68.94(76.21) 69.02(78.35) 68.69(73.33) 
10 68.08(79.36) 64.36(86.41) 58.42(90.30) MRMR-MID 

20 71.82(85.26) 74.98(97.51) 65.88(98.66) 
5 61.06(66.10) 55.97(62.55) 57.57(61.39) 
10 63.57(69.83) 61.20(70.95) 58.51(67.15) MRMR-MIQ 

20 71.88(81.29) 75.68(93.30) 65.06(96.49) 
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MB does not return the best accuracy but there is not a 
big difference. We note that MMMB and HITON-MB 
discover almost the same MB. Even though the MB 
feature selection methods do not guarantee to provide 
the best solution in all data sets, their usefulness is still 
evident since the selection method reduces the number 
of features significantly while maintaining the good 
performance. Among these MB discovery algorithms, 
IAMB generally performs well for all these categorical 
data sets. 

5.2 Continuous data 

For continuous data, all data sets are from Kent 
Ridge Bio-medical repository (Li and Liu, 2002). The 

information about the data sets is in Table 6. All con-
tinuous data sets are microarray gene expression data, 
which are high-dimensional in features having relatively 
small number of observations. The AML/ALL data set 
is to predict the presence of acute myeloid leukemia or 
acute lymphoblastic leukemia. Colon Cancer, Prostate 
Cancer and Ovarian Cancer data sets are to predict colon 
cancer, prostate cancer and ovarian cancer of patients, 
respectively.  

Tables 7-10 show the performance result for each 
data set of each classification model, which includes the 
number of features selected, classification accuracy of 
the test data and accuracy of the training data (in paren-
thesis). The best performing feature selection method 
for each classifier is marked in bold numbers. 

Table 3. Performance comparison for promoter data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 57 92.15 (98.95) 72.33 (100.00) 77.91 (82.39) 

0.01 4 92.85 (94.30) 69.85 (71.63) 85.69 (97.65) IAMB 
0.05 3 91.25 (94.44) 71.45 (71.32) 86.02 (96.76) 
0.01 24 90.73 (97.67) 76.65 (96.54) 73.64 (82.70) MMMB 
0.05 53 87.51 (98.62) 75.05 (100.00) 80.73 (80.92) 
0.01 24 91.31 (97.90) 73.91 (96.46) 74.56 (85.22) HITON-MB 
0.05 53 89.85 (98.72) 73.41 (100.00) 76.05 (88.91) 

CFS 6 95.27 (95.47) 68.27 (73.25) 83.58 (100.00) 
5 95.29 (96.21) 67.16 (72.77) 85.91 (96.13) 
20 95.04 (96.85) 72.85 (93.44) 83.52 (76.45) MRMR-MID 
50 92.47 (98.78) 70.85 (100.00) 73.56 (80.88) 
5 93.13 (96.52) 68.96 (72.79) 85.02 (96.83) 
20 94.33 (97.44) 71.07 (93.90) 76.20 (82.34) MRMR-MIQ 
50 90.75 (98.74) 74.82 (100.00) 73.25 (86.62) 

 
Table 4. Performance comparison for splice data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 60 92.67 (99.89) 80.00 (100.00) 97.77 (98.68) 

IAMB 0.01/0.05 4 93.86 (97.01) 81.19 (84.60) 97.90 (98.86) 
0.01 14 96.44 (99.10) 86.74 (97.62) 98.23 (98.99) MMMB/ 

HITON-MB 0.05 24 95.05 (99.77) 84.98 (100.00) 98.34 (99.10) 
CFS 8 95.45 (99.09) 85.12 (94.16) 98.43 (98.90) 

5 96.04 (99.20) 80.05 (87.63) 98.56 (98.90) 
10 96.24 (99.21) 87.71 (96.83) 97.54 (98.53) MRMR-MID 
20 97.23 (99.38) 81.62 (100.00) 97.89 (98.73) 
5 93.88 (98.07) 82.97 (89.60) 98.43 (98.85) 
10 95.47 (99.34) 87.54 (96.34) 98.24 (98.94) MRMR-MIQ 
20 97.23 (99.72) 84.00 (100.00) 98.35 (99.13) 
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It is observed in Tables 7-10 that the MB feature se-
lection methods perform quite well for these continuous 
data sets when combined with suitable classifiers. It 
seems that IAMB extracts more features than HITON-
MB for these continuous data sets. For the AML/ALL 
data set, the CFS method shows the best performance 
when combined with the classifier SVM or KNN, but the 
MB feature selection methods show relatively good re-
sults. For this data set, HITON-MB having 1% signifi-
cance level produce better performance than any other 
feature selection methods when combined with the classi-
fier NB. It should be noted that IAMB achieves the best 
performance for the Colon Cancer data set using only 

three features out of two thousands. For the Prostate and 
Ovarian Cancer data sets, the MB feature selection meth-
ods generally produce better performance. When compar-
ing the CFS method with the MRMR method, the former 
generally performs better than the latter in these data sets. 

6.  CONCLUSION 

We have shown that Markov blanket discovery al-
gorithms can be utilized as feature selection methods by 
constructing a minimal set of features from a Bayesian 
network formed by the whole variables. Moreover, Mar- 

Table 5. Performance comparison for Lung cancer data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 143 93.23 (99.00) 87.81 (100.00) 97.40 (98.49) 

IAMB 0.01/0.05 6 93.81 (98.89) 94.24 (94.85) 98.50 (99.72) 
0.01 5 92.60 (98.88) 93.41 (95.95) 95.82 (96.16) MMMB 
0.05 5 91.60 (98.35) 91.03 (95.55) 93.54 (94.06) 
0.01 4 90.81 (97.80) 90.58 (92.51) 89.87 (90.18) HITON-MB 
0.05 8 94.01 (98.80) 88.21 (96.65) 95.48 (95.99) 

CFS 17 96.00 (99.77) 89.62 (99.64) 97.83 (98.72) 
5 93.01 (97.82) 90.78 (94.32) 93.80 (94.27) MRMR-MID 
10 95.03 (99.00) 89.19 (96.81) 96.87 (97.41) 
5 91.00 (96.99) 90.81 (92.35) 91.39 (91.60) MRMR-MIQ 
10 91.81 (98.74) 89.03 (93.54) 94.97 (96.25) 

 
Table 6. Continuous data sets for experiments 

Data set # features # observations # classes 
AML/ALL 7129 72 2 

Colon Cancer 2000 62 2 
Prostate Cancer 12600 102 2 
Ovarian Cancer 15114 253 2 

 
Table 7. Performance comparison for AML/ALL data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 7129 98.89 (100.00) 96.36 (100.00) 98.63 (99.26) 

0.01 62 88.89 (91.33) 98.32 (100.00) 97.38 (98.52) IAMB 
0.05 63 89.17 (92.17) 98.06 (100.00) 98.18 (99.04) 
0.01 4 98.61 (100.00) 98.04 (100.00) 99.88 (99.87) HITON-MB 
0.05 6 97.22 (98.97) 96.93 (100.00) 99.94 (100.00) 

CFS 44 98.33 (99.78) 100.00 (100.00) 100.00 (100.00) 
5 94.44 (96.24) 90.17 (95.69) 99.02 (99.43) MRMR-FCD 
60 95.56 (96.87) 97.14 (100.00) 99.82 (99.94) 
5 90.28 (92.34) 97.18 (100.00) 98.48 (99.12) MRMR-FCQ 
60 96.11 (97.38) 97.83 (100.00) 99.41 (99.70) 
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Table 8. Performance comparison for Colon Cancer data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 2000 57.42 (90.75) 83.82 (100.00) 95.04 (97.15) 

0.01 3 88.71 (98.34) 86.82 (92.75) 97.97 (98.93) IAMB 
0.05 55 62.58 (81.35) 86.49 (100.00) 94.52 (96.82) 
0.01 2 84.19 (97.78) 85.54 (89.12) 94.53 (96.84) HITON-MB 
0.05 7 87.10 (98.99) 86.56 (93.96) 95.65 (97.55) 

CFS 6 52.58 (78.88) 69.77 (76.39) 93.80 (96.58) 
5 84.52 (97.97) 83.44 (88.38) 96.80 (98.21) MRMR- FCD 
50 83.55 (97.30) 81.97 (100.00) 95.05 (97.11) 
5 88.39 (98.01) 83.62 (90.17) 97.03 (98.29) MRMR- FCQ 
50 87.42 (99.43) 83.03 (100.00) 96.70 (98.09) 

 
Table 9. Performance comparison for Prostate Cancer data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 12600 62.94 (81.11) 91.18 (100.00) 97.11 (98.34) 

0.01 88 83.73 (90.44) 96.65 (100.00) 98.21 (99.02) 
IAMB 

0.05 89 83.53 (90.14) 98.23 (100.00) 96.88 (98.16) 
0.01 5 92.55 (95.71) 93.50 (97.21) 99.02 (99.44) 

HITON-MB 
0.05 7 94.71 (98.78) 93.54 (96.62) 98.47 (99.09) 

CFS 27 93.14 (97.27) 97.42 (100.00) 99.87 (99.96) 
5 91.96 (94.98) 93.16 (93.38) 98.39 (99.15) 
30 93.73 (96.74) 91.58 (100.00) 98.28 (99.00) MRMR – FCD 
90 92.35 (95.47) 93.15 (100.00) 98.85 (99.32) 
5 88.63 (92.11) 93.51 (96.62) 98.34 (99.04) 
30 93.73 (95.99) 94.90 (100.00) 99.06 (99.43) MRMR – FCQ 
90 94.12 (98.77) 95.90 (100.00) 98.41 (99.11) 

 
Table 10. Performance comparison for Ovarian Cancer data set 

Accuracies in percentage 
Feature selection # features 

NB SVM KNN 
All features 15046 91.07 (95.43) 99.84 (100.00) 98.97 (99.40) 

0.01 30 99.64 (100.00) 100.00 (100.00) 100.00 (100.00) 
IAMB 

0.05 224 93.36 (97.52) 100.00 (100.00) 99.78 (99.87) 
0.01 7 99.53 (100.00) 100.00 (100.00) 100.00 (100.00) 

HITON-MB 
0.05 9 98.97 (99.33) 99.92 (100.00) 100.00 (100.00) 

CFS 28 99.60 (100.00) 100.00 (100.00) 100.00 (100.00) 
5 96.99 (98.23) 97.00 (97.02) 98.87 (99.34) 
10 96.13 (97.89) 97.23 (97.61) 99.05 (99.45) MRMR- FCD 
30 97.94 (99.02) 98.97 (99.84) 99.71 (99.84) 
5 96.92 (98.04) 97.94 (98.26) 99.31 (99.61) 
10 98.02 (98.98) 98.81 (99.66) 99.93 (99.98) MRMR- FCQ 

30 98.97 (99.35) 99.92 (100.00) 99.97 (100.00) 



Classification of High Dimensionality Data through Feature Selection Using Markov Blanket 
Vol 14, No 2, June 2015, pp.210-219, © 2015 KIIE 219
  

 

kov blanket discovery algorithms are shown to be com-
petitive in the classification performance as compared to 
other popular feature selection methods in the experi-
ments with categorical and continuous data sets. Among 
these MB discovery algorithms, the IAMB algorithm, 
which is simplest, generally performs quite well for all 
categorical and continuous data sets considered. 
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