SUFFICIENT CONDITIONS FOR STARLIKENESS

V. RAVICHANDRAN AND KANIKA SHARMA

Abstract. We obtain the conditions on \(\beta \) so that \(1 + \beta z p'(z) \lessdot \frac{1 + 4z}{3 + 2z^2/3} \) implies \(p(z) \lessdot \frac{2 + z}{2 - z} \), \(1 + (1 - \alpha)z \), \((1 + (1 - 2\alpha)z)/(1 - z) \), \((0 \leq \alpha < 1) \), \(\exp(z) \) or \(\sqrt{1 + z} \). Similar results are obtained by considering the expressions \(1 + \beta z p'(z)/p(z) \), \(1 + \beta z p'(z)/p(z)^2 \) and \(p(z) + \beta z p'(z)/p(z) \).

These results are applied to obtain sufficient conditions for normalized analytic function \(f \) to belong to various subclasses of starlike functions, or to satisfy the condition \(|\log(zf'(z)/f(z))| < 1 \) or \(|(zf'(z)/f(z))^2 - 1| < 1 \) or \(zf'(z)/f(z) \) lying in the region bounded by the cardioid \((9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0\).

1. Introduction

Let \(A \) denote the class of analytic functions in the unit disc \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) of the form \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \). An analytic function \(p(z) = 1 + cz + \cdots \) is a function with a positive real part if \(\text{Re} p(z) > 0 \). The class of all such functions is denoted by \(P \). For two functions \(f \) and \(g \) analytic in \(\mathbb{D} \), \(f \) is subordinate to \(g \), denoted by \(f \lessdot g \), if there is an analytic function \(w \) in \(\mathbb{D} \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) such that \(f(z) = g(w(z)) \). In particular, if the function \(g \) is univalent in \(\mathbb{D} \), then \(f \lessdot g \) is equivalent to \(f(0) = g(0) \) and \(f(\mathbb{D}) \subset g(\mathbb{D}) \). Noticing that several subclasses of univalent functions are characterized by the quantities \(zf'(z)/f(z) \) or \(1 + zf''(z)/f'(z) \) lying in a region in the right-half plane, Ma and Minda [6] gave a unified presentation of various subclasses of convex and starlike functions. They considered analytic functions \(\varphi \) with positive real part in \(\mathbb{D} \) that map the unit disc \(\mathbb{D} \) onto regions starlike with respect to 1, symmetric with respect to the real axis and normalized by the conditions \(\varphi(0) = 1 \) and \(\varphi'(0) > 0 \). Ma and Minda [6] introduced the following classes:

\[
S^*(\varphi) := \left\{ f \in A : \frac{zf'(z)}{f(z)} \lessdot \varphi(z) \right\}
\]
and

$$C(\phi) := \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \prec \phi(z) \right\}.$$

For special choices of ϕ, $S^*(\phi)$ reduces to well-known subclasses of starlike functions. For example, when $-1 \leq B < A \leq 1$, $S^*[A, B] := S^*(1 + Az)/(1 + Bz)$ is the class of Janowski starlike function $[4, 10]$ and $S^*[1 - 2\alpha, -1]$ is the class $S^*(\alpha)$ of starlike functions of order α, introduced by Robertson $[12]$ and $S^* := S^*(0)$ is the class of starlike functions. Similarly, $S^*_L := S^*(\sqrt{1 + z})$ is the subclass of S^* introduced by Sokol and Stankiewicz $[18]$, consisting of functions $f \in \mathcal{A}$ such that $zf'(z)/f(z)$ lies in the region bounded by the right-half of the lemniscate of Bernoulli given by $|w^2 - 1| < 1$. More results regarding these classes can be found in $[1, 3, 5, 11, 13, 16, 17]$. Recently, Sharma et al. $[14]$ introduced and studied the properties of the class

$$S^*(1 + (4/3)z + (2/3)z^2) = S^*_C.$$

Precisely, $f \in S^*_C$ provided $zf'(z)/f(z)$ lies in the region bounded by the cardioid $(9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0$. The class $S^*_L := S^*(e^z)$, introduced recently by Mendariratta et al. $[7]$, consists of functions $f \in \mathcal{A}$ satisfying the condition $|\log(zf'(z)/f(z))| < 1$.

Let p be an analytic function defined on D with $p(0) = 1$. Recently Ali et al. $[2]$ determined the condition on β for $p(z) \prec \sqrt{1 + z}$ when $1 + \beta zf'(z)/p^2(z)$ with $n = 0, 1, 2$ or $(1 - \beta)p(z) + \beta p^2(z) + \beta zp'(z)$ is subordinated to $\sqrt{1 + z}$. Motivated by the works in $[1, 3, 9, 15, 17]$, in Section 2, we determine the sharp conditions on β so that $p(z) \prec (2 + z)/(2 - z)$ or $1 + (1 - \beta)z/(1 - z)$, $(0 \leq \alpha < 1)$ when $1 + \beta zp'(z) \prec 1 + 4z/3 + 2z^2/3$. Conditions on β so that $1 + \beta zp'(z)/p(z) \prec 1 + 4z/3 + 2z^2/3$ implies $p(z) \prec (1 + z)/(1 - z)$ or $1 + z$ are also discussed. Conditions on β are derived so that the subordination $1 + \beta zp'(z)/p^2(z) \prec 1 + 4z/3 + 2z^2/3$ implies $p(z) \prec (1 + z)/(1 - z)$ or $(2 + z)/(2 - z)$ or $1 + z$. We also determine the conditions on β so that $p(z) \prec (1 + z)/(1 - z)$ or $1 + 4z/3 + 2z^2/3$, when $p(z) + \beta zp'(z)/p(z) \prec 1 + 4z/3 + 2z^2/3$. Section 3 of the paper investigates the sharp conditions on β so that $1 + \beta zp'(z)/p^2(z) \prec 1 + 4z/3 + 2z^2/3$ $(n = 0, 1, 2)$ implies $p(z) \prec e^z$. Similarly, in Section 4, we consider differential implications with the superordinate function e^z replaced by the superordinate function $\sqrt{1 + z}$. In addition to this, condition on β is determined so that $p(z) \prec \sqrt{1 + z}$ when $p(z) + \beta zp'(z)/p(z) \prec 1 + 4z/3 + 2z^2/3$. In Section 5, we give applications of our results which will yield sufficient conditions for $f \in \mathcal{A}$ to belong to the various subclasses of starlike functions.

The following results will be required in our investigation.

Lemma 1.1 ([8, Corollary 3.4h, p. 135]). Let q be univalent in D, and let ϕ be analytic in a domain D containing $q(D)$. Let $qz'(z)\phi(q(z))$ be starlike. If p is analytic in D, $p(0) = q(0)$ and satisfies $zp'(z)\phi(p(z)) \prec qz'(z)\phi(q(z))$, then $p \prec q$ and q is the best dominant.

The following is a more general version of the above lemma.
Lemma 1.2 ([8, Theorem 3.4, p. 134]). Let \(q \) be univalent in \(\mathbb{D} \) and let \(\varphi \) and \(\nu \) be analytic in a domain \(D \) containing \(q(\mathbb{D}) \) with \(\varphi(w) \neq 0 \) when \(w \in q(\mathbb{D}) \). Set \(Q(z) := zq'(z)\varphi(q(z)) \), \(h(z) := \nu(q(z)) + Q(z) \). Suppose that (i) either \(h \) is convex or \(Q(z) \) is starlike univalent in \(\mathbb{D} \) and (ii) \(\text{Re}(zh'(z)/Q(z)) > 0 \) for \(z \in \mathbb{D} \). If \(p \) is analytic in \(\mathbb{D} \), \(p(0) = q(0) \) and satisfies
\[
(1) \quad \nu(p(z)) + zp'(z)\varphi(p(z)) < \nu(q(z)) + zq'(z)\varphi(q(z)),
\]
then \(p < q \) and \(q \) is the best dominant.

Lemma 1.3 ([8, Corollary 3.4a, p. 120]). Let \(q \) be analytic in \(\mathbb{D} \) and \(\phi \) be analytic in a domain \(D \) containing \(q(\mathbb{D}) \) and suppose (i) \(\text{Re}(\phi(q(z))) > 0 \) and either (ii) \(q \) is convex, or (iii) \(Q(z) = zq'(z)\phi(q(z)) \) is starlike. If \(p \) is analytic in \(\mathbb{D} \), \(p(0) = q(0) \), \(p(\mathbb{D}) \subset D \) and \(p(z) + zp'(z)\phi(p(z)) < q(z) \), then \(p < q \).

2. Results associated with starlikeness

Let \(p \) be an analytic function in \(\mathbb{D} \) with \(p(0) = 1 \). In the first result, conditions on \(\beta \) are obtained so that the subordination
\[
1 + \beta z p'(z) < 1 + \frac{4z}{3} + \frac{2z^2}{3}
\]
implies \(p(z) < (2 + z)/(2 - z) \) or \(1 + (1 - \alpha)z \) or \(1 + (1 + 2\alpha)z)/(1 - z) \), \((0 \leq \alpha < 1)\).

Theorem 2.1. Let \(\beta_0 \approx 1.90987 \) be the root of the equation \(9 + 47\beta + 90\beta^2 - 216\beta^3 + 81\beta^4 = 0 \). Let \(p \) be an analytic function defined on \(\mathbb{D} \) with \(p(0) = 1 \) satisfying
\[
1 + \beta z p'(z) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then the following sharp results hold:
\[
\begin{align*}
(\text{a}) & \quad \text{If } \beta \leq -4.5 \text{ or } \beta \geq \beta_0, \text{ then } p(z) < (2 + z)/(2 - z). \\
(\text{b}) & \quad \text{If } |\beta| \geq 2/(1 - \alpha), (0 \leq \alpha < 1), \text{ then } p(z) < 1 + (1 - \alpha)z. \\
(\text{c}) & \quad \text{If } \beta \leq -4/(1 - \alpha) \text{ or } \beta \geq 4/(3(1 - \alpha)), (0 \leq \alpha < 1), \text{ then } p(z) < (1 + (1 - 2\alpha)z)/(1 - z).
\end{align*}
\]

Proof. Define the function \(q : \mathbb{D} \to \mathbb{C} \) by \(q(z) = (1 + Az)/(1 + Bz) \), \((-1 \leq B < A \leq 1)\) with \(q(0) = 1 \). Let us define \(\varphi(w) = \beta \) and \(Q(z) = zq'(z)\varphi(q(z)) \).

Since \(q \) is the convex univalent function, \(Q \) is starlike in \(\mathbb{D} \). It follows from Lemma 1.1, that the subordination
\[
1 + \beta z p'(z) < 1 + \beta zq'(z)
\]
implies \(p(z) \prec q(z) \). The theorem is proved by computing \(\beta \) so that
\[
(2) \quad 1 + \frac{4z}{3} + \frac{2z^2}{3} < 1 + \beta z q'(z) = 1 + \frac{\beta(A - B)z}{(1 + Bz)^2} := h(z).
\]

Set \(\psi(z) = 1 + 4z/3 + 2z^2/3 \). Clearly, \(\psi(\mathbb{D}) = \left\{ w \in \mathbb{C} : | -2 + \sqrt{6w - 2}| < 2 \right\} \).

The subordination \(\psi(z) \prec h(z) \) holds if \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D}) \). Thus, by using
A calculation shows that if
\[x = \frac{6\beta(A - B)e^{it}}{(1 + Be^{it})^2} - 2 \]
we have
\[\left| \sqrt{4 + \frac{6\beta(A - B)e^{it}}{(1 + Be^{it})^2} - 2} \right| \geq 2. \]

Set
\[w = u + iv = 4 + (6\beta(A - B)e^{it})/(1 + Be^{it})^2. \]

Then, condition (3) holds if \(|\sqrt{w} - 2| \geq 2\) which is same as \(|w| \geq 4\text{Re}(\sqrt{w})\).

On further simplification, we get
\[(u^2 + v^2 - 8u + 2) \geq 0. \]

(a) Take \(A = 1/2, B = -1/2\) in (4). Then
\[u = 4 + \frac{24\beta(5\cos t - 4)}{(5 - 4\cos t)^2}, \quad v = \frac{72\beta\sin t}{(5 - 4\cos t)^2}. \]

So, (5) reduces to
\[\frac{-768}{(5 - 4\cos t)^4}(1921 - 3712\beta + 2376\beta^2 - 432\beta^4 - 80(37 - 69\beta + 36\beta^2)\cos t \]
\[+ 16(83 - 132\beta + 36\beta^2)\cos 3t - 320\cos 3t + 320\beta\cos 3t + 32\cos 4t \geq 0. \]

We need to find the values of \(\beta\) for which \(f(x) \geq 0\) in the interval \(-1 \leq x \leq 1\), where \(x = \cos t\) and
\[f(x) = -(1921 - 3712\beta + 2376\beta^2 - 432\beta^4 - 80(37 - 69\beta + 36\beta^2)x \]
\[+ 16(83 - 132\beta + 36\beta^2)(2x^2 - 1) - 320(4x^3 - 3x) \]
\[+ 320\beta(4x^3 - 3x) + 32(8x^4 - 8x^2 + 1)). \]

A calculation shows that
\[f'(x) = -16(-5 + 4x)(25 + 16x^2 - 57\beta + 36\beta^2 + 20x(-2 + 3\beta)) = 0 \]
if \(x = x_1 = 5/4\) or \(x = x_2 = (10 - 15\beta - 3\sqrt{-8\beta + 9\beta^2})/8\) or \(x = x_3 = (10 - 15\beta + 3\sqrt{-8\beta + 9\beta^2})/8\). Note that \(-1 \leq x_2, x_3 \leq 1\) if and only if \(\beta > 8/9\). These observations lead to two cases:

Case 1: \(\beta > 8/9\). In this case, \(f''(x_2) < 0\) and \(f''(x_3) > 0\). Thus \(f(x)\) attains its minimum value at \(x = x_3\), it follows that \(f(x) \geq 0\) for \(-1 \leq x \leq 1\) if and only if
\[f(x_3) = \frac{27\beta^2}{2} \left(24 + 153\beta^2 + 40\sqrt{-8\beta + 9\beta^2} - 3\beta(68 + 15\sqrt{-8\beta + 9\beta^2}) \right) \geq 0, \]
which is possible if \(\beta \geq \beta_0\). Hence \(p(z) < q(z)\) if \(\beta \geq \beta_0 \approx 1.90987\).

Case 2: \(\beta \leq 8/9\). In this case, \(f'(1) \geq 0\), \(f'(-1) \geq 0\) and \(f'(x)\) has no zero in \([-1, 1]\). Hence by Intermediate Value Theorem, \(f'(x) \geq 0\) for \(-1 \leq x \leq 1\). Thus, \(f(x) \geq 0\) for \(-1 \leq x \leq 1\) if and only if
\[f(-1) = 27(-3 + 2\beta)^3(9 + 2\beta) \geq 0, \]
which is possible if $\beta \leq -4.5$. Hence $p(z) \prec q(z)$ if $\beta \leq -4.5$. This completes the proof for part (a).

(b) Take $A = 1 - \alpha$, $B = 0$, $(0 \leq \alpha < 1)$ in (4). Then

$$u = 4 + 6\beta(1 - \alpha)\cos t, \quad v = 6\beta(1 - \alpha)\sin t.$$

So, (5) takes the following form

$$g(t) := 48(27\beta^4(1 - \alpha)^4 - 72\beta^2(1 - \alpha)^2 - 16 - 64\beta(1 - \alpha)\cos t) \geq 0.$$

We need to find all possible values of β for which $g(t)$ is non negative for $t \in [-\pi, \pi]$. Clearly, $g(t)$ attains its minimum value at $t = 0$ if $\beta > 0$ and $t = \pm\pi$ if $\beta < 0$. If $\beta > 0$, then $g(t) \geq 0$ if and only if

$$g(0) = 48(-2 + \beta(1 - \alpha))(2 + 3\beta(1 - \alpha))^3 \geq 0$$

which is true if $\beta \geq 2/(1 - \alpha)$. Next if $\beta < 0$, then $g(t) \geq 0$ if and only if

$$g(\pi) = 48(2 + \beta(1 - \alpha))(-2 + 3\beta(1 - \alpha))^3 \geq 0$$

which is possible if $\beta \leq -2/(1 - \alpha)$. Hence $p(z) \prec q(z)$ if $|\beta| \geq 2/(1 - \alpha)$.

(c) Take $A = 1 - 2\alpha$, $B = -1$, $(0 \leq \alpha < 1)$ in (4). Then, we get

$$u = 4 - 3\beta(1 - \alpha)\sin^2 t/2, \quad v = 0.$$

So, (5) reduces to

$$(u^2 - 8u)^2 - 64u^2 \geq 0,$$

which on further simplification becomes $u(u - 16) \geq 0$ which implies that

$$(-4\sin^2 t/2 + 3\beta(1 - \alpha))(\beta(1 - \alpha) + 4\sin^2 t/2) \geq 0$$

which is possible if $\beta \geq 4/3(1 - \alpha)$ or $\beta \leq -4/(1 - \alpha)$. This completes the proof for (c). □

Next result depicts the conditions on β so that the subordination

$$1 + \beta z p'(z) / p(z) \prec 1 + z + 2z^2$$

implies $p(z) \prec (1 + z)/(1 - z)$ or $1 + z$ where p is an analytic function in \mathbb{D} with $p(0) = 1$.

Theorem 2.2. Let p be an analytic function defined on \mathbb{D} with $p(0) = 1$ satisfying

$$1 + \beta z p'(z) / p(z) \prec 1 + z + 2z^2,$$

then the following sharp results hold:

(a) If $|\beta| \geq \sqrt{(4\sqrt{3} + 8)/(3\sqrt{3})} \approx 1.6947$, then $p(z) \prec (1 + z)/(1 - z)$.

(b) If $\beta \geq 4$ or $\beta \leq -2$, then $p(z) \prec 1 + z$.

Proof. Let the function \(q : \mathbb{D} \to \mathbb{C} \) be defined by \(q(z) = (1 + Az)/(1 + Bz) \), \((-1 \leq B < A \leq 1) \) with \(q(0) = 1 \). Let us define \(\varphi(w) = \beta/w \) and \(Q(z) = z\varphi'(z)\varphi(q(z)) = \beta(A - B)z/(1 + Az)(1 + Bz) \). A computation shows that

\[
\frac{zQ'(z)}{Q(z)} = \frac{1 - ABz^2}{(1 + Az)(1 + Bz)}.
\]

Thus with \(z = re^{it}, r \in (0, 1), t \in [-\pi, \pi], \) yields

\[
\Re\left(\frac{1 - ABz^2}{(1 + Az)(1 + Bz)} \right) = \frac{(1 - ABr^2)(1 + (A + B)r \cos t + ABr^2)}{|1 + Are^{it}|^2|1 + Bre^{it}|^2}.
\]

Since \(1 + ABr^2 + (A + B)r \cos t \geq (1 - Ar)(1 - Br) > 0 \) for \(A + B \geq 0 \) and similarly, \(1 + ABr^2 + (A + B)r \cos t \geq (1 + Ar)(1 + Br) > 0 \) for \(A + B \leq 0 \), it follows that \(Q(z) \) is starlike in \(\mathbb{D} \). An application of Lemma 1.1 reveals that the subordination

\[
1 + \beta \frac{z\varphi'(z)}{p(z)} < 1 + \beta \frac{z\varphi(q(z))}{q(z)}
\]

implies \(p(z) \prec q(z) \). Now our result is established if we prove

\[
1 + \frac{4z^2}{3} + \frac{2z^2}{3} < 1 + \beta \frac{z\varphi'(z)}{q(z)} = 1 + \frac{\beta(A - B)z}{(1 + Az)(1 + Bz)} := h(z).
\]

Let \(\psi(z) = 1 + 4z/3 + 2z^2/3 \). Then \(\psi(\mathbb{D}) = \{w \in \mathbb{C} : | -2 + \sqrt{6w - 2} | < 2\} \). The subordination \(\psi(z) \prec h(z) \) holds if \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D}) \). Thus, by using the definition of \(h \) as given in (6), the subordination \(\psi(z) \prec h(z) \) holds if for \(t \in [-\pi, \pi], \) we have

\[
\left| \left(\sqrt{4 + \frac{6\beta(A - B)e^{it}}{(1 + Ae^{it})(1 + Be^{it})}} - 2 \right) \right| \geq 2.
\]

Set

\[
w = u + iv = 4 + (6\beta(A - B)e^{it})/(1 + Ae^{it})(1 + Be^{it})
\]

Then, proceeding as in Theorem 2.1, we have to deduce (5).

(a) Take \(A = 1, B = -1 \) in (7). Then \(u = 4 \) and \(v = 6\beta/\sin t \). Substituting \(u \) and \(v \) in (5), we get

\[
\left(\frac{36\beta^2}{\sin^2 t} - 16 \right)^2 - 64 \left(16 + \frac{36\beta^2}{\sin^2 t} \right) \geq 0.
\]

Our problem is now to find all possible values of \(\beta \) for which \(p(x) \geq 0 \) for \(x \in [-1, 1], \) where \(x = \sin t \) and \(p(x) = -16x^4 - 72x^2\beta^2 + 27\beta^4 \). Clearly, \(p(x) \geq -16 - 72\beta^2 + 27\beta^4 \geq 0 \) if \(|\beta| \geq \sqrt{(4/\sqrt{3} + 8)/(3\sqrt{2})} \approx 1.6947 \).

(b) Take \(A = 1, B = 0 \) in (7). Then, \(u = 4 + 3\beta \) and \(v = 3\beta \tan t/2 \). So, (5) becomes

\[
-3 \cot^2 t (3(32 + 64\beta + 48\beta^2 - 9\beta^4)) + 16(8 + 16\beta + 9\beta^2) \cos t + 32(1 + 2\beta) \cos 2t \geq 0.
\]
Now our problem is to find all values of β for which $g(x)$ is non negative in the whole interval $-1 \leq x \leq 1$ where $x = \cos t$ and $g(x) = -3(3(32+64\beta+48\beta^2-9\beta^4)+16(8+16\beta+9\beta^2)x+32(1+2\beta)(2x^2-1))$. A calculation shows that $g'(x) = 0$ if $x = x_0 = (-8 - 16\beta - 9\beta^2)/(8(1 + 2\beta))$ and $g''(x) = -384(1 + 2\beta)$. Let us first assume that $\beta < -1/2$. In this case, $g''(x_0) > 0$. Thus, $\min g(x) = g(x_0) = 162\beta^4(2 + \beta)/(1 + 2\beta)$. Hence, $g(x)$ is non negative if and only if $g(x_0)$ is non negative which is possible only if $\beta \leq -2$. Let us next assume that $\beta \geq -1/2$. In this case, we get $g''(x) \leq 0$ so that $g'(x) \leq g'(-1) = -432\beta^2 \leq 0$ and hence $g(x)$ is decreasing function. Therefore, $g(x) \geq 0$ if and only if $g(1) = 3(-4 + \beta)(4 + 3\beta)^3 \geq 0$ which can happen only when $\beta \geq 4$. Hence we get our required result.

In the next result, the conditions on β are derived so that the subordination

$$1 + \beta z p'(z) / p^2(z) < 1 + 4z / 3 + 2z^2 / 3$$

implies $p(z) \prec (1 + z)/(1 - z) or (2 + z)/(2 - z)$ or $1 + z$ where p is an analytic function in D with $p(0) = 1$.

Theorem 2.3. Let $\beta_0 \approx -1.90987$ be the smallest real root of $9 - 47\beta + 90\beta^2 + 216\beta^3 + 81\beta^4 = 0$. Let p be an analytic function defined on D with $p(0) = 1$ satisfying

$$1 + \beta z p'(z) / p^2(z) < 1 + 4z / 3 + 2z^2 / 3,$$

then the following sharp results hold:

(a) If $\beta \geq 4$ or $\beta \leq -4/3$, then $p(z) \prec (1 + z)/(1 - z)$.
(b) If $\beta \geq 9/2$ or $\beta \leq \beta_0$, then $p(z) \prec (2 + z)/(2 - z)$.
(c) If $\beta \geq 8$ or $\beta \leq -8/3$, then $p(z) \prec 1 + z$.

Proof. Define the function $q : \mathbb{D} \to \mathbb{C}$ by $q(z) = (1 + Az)/(1 + Bz)$, $(-1 \leq B < A \leq 1)$ and consider the function $Q(z) = \beta z q'(z) / q^2(z) = \beta (A - B) z / (1 + Az)^2$. Consider

$$z Q'(z) / Q(z) = 1 - Az / 1 + Az.$$

Let $z = re^{it}$, $-\pi \leq t \leq \pi$, $0 < r < 1$. Then

$$\text{Re} \left(1 - Az / (1 + Az) \right) = 1 - A^2 r^2 / (1 + Ar e^{it})^2 > 0.$$

Hence, Q is starlike in D. Now it is easy to see that the subordination

$$1 + \beta z p'(z) / p^2(z) < 1 + \beta z q'(z) / q^2(z)$$

implies $p(z) \prec q(z)$ by Lemma 1.1. So our result will be proved if we can prove

$$\psi(z) := 1 + 4z / 3 + 2z^2 / 3 \prec 1 + \beta z q'(z) / q^2(z) = 1 + \beta (A - B) z / (1 + Az)^2 := h(z).$$
So, we only need to show that for $t \in [-\pi, \pi]$, the following condition holds
\[
\left| \left(\sqrt{4 + \frac{6\beta(A-B)e^{it}}{(1 + A e^{it})^2}} - 2 \right) \right| \geq 2.
\]
Let
\[
w = u + iv = 4 + \frac{6\beta(A-B)e^{it}}{(1 + A e^{it})^2}.
\]
Then, proceeding as in Theorem 2.1, we have to get (5).

(a) Take $A = 1, B = -1$ in (9). Then, $u = 4 + 3\beta \sec^2 t/2$ and $v = 0$. So, (5) reduces to $u(u - 16) \geq 0$. Now, it is easy to see that our target is to find conditions on β such that $f(x) \geq 0$ for $-1 \leq x \leq 1$, where
\[
x = \cos \frac{t}{2}, \quad f(x) = (4x^2 + 3\beta)(\beta - 4x^2).
\]
Clearly, $f(x) \geq 0$ if $\beta \leq -4/3$ or $\beta \geq 4$.

(b) Take $A = 1/2, B = -1/2$ in (9). Then,
\[
u = 72\sin t \left(\frac{5 + 4 \cos t}{(5 + 4 \cos t)^2} \right), \quad v = \frac{72\sin t}{(5 + 4 \cos t)^2}.
\]

So, (5) reduces to
\[
\frac{76}{(5 + 4 \cos t)^2} \left(-1921 + 8\beta(-464 - 297\beta + 54\beta^3) - 80(37 + 69\beta + 36\beta^2) \cos t - 16(83 + 12\beta(11 + 3\beta)) \cos 2t - 320(1 + \beta) \cos 3t - 32 \cos 4t \right) \geq 0.
\]

We need to find the values of β for which $g(x) \geq 0$ in the interval $-1 \leq x \leq 1$, where $x = \cos t$ and
\[
g(x) = -(5 + 4x)^4 - 16(5 + 4x)^2(4 + 5x)\beta - 72(5 + 4x)^2\beta^2 + 432\beta^4.
\]
A calculation shows that
\[
g'(x) = -16(5 + 4x)(5 + 4x)^2 + 3(19 + 20x)\beta + 36\beta^2 = 0
\]
if $x = x_1 = -5/4$ or $x = x_2 = (-10 - 15\beta - 3\sqrt{8\beta + 9\beta^2})/8$ or $x = x_3 = (-10 - 15\beta + 3\sqrt{8\beta + 9\beta^2})/8$. Note that x_2, x_3 are real numbers if and only if $\beta > 0$ or $\beta < -8/9$. These observations lead to three cases:

Case 1: $\beta < -8/9$. In this case, $g''(x_2) > 0$ and $g''(x_3) < 0$. Thus, $g(x)$ attains its minimum value at $x = x_2$, it follows that $g(x) \geq 0$ for $-1 \leq x \leq 1$ if and only if
\[
g(x_2) = \frac{27\beta^2}{2} \left(24 + 40\sqrt{8\beta + 9\beta^2} + 3\beta(68 + 51\beta + 15\sqrt{8\beta + 9\beta^2}) \right) \geq 0,
\]
which is possible if $\beta \leq -1.90987$.

Case 2: $\beta \geq 0$. In this case, we get $g''(x) \leq 0$ so that $g'(x) \leq g'(1) = -16(1 - 3\beta + 36\beta^2) \leq 0$ and hence $g(x)$ is a decreasing function. Therefore, $g(x) \geq 0$ if and only if $g(1) = 27(-9 + 2\beta)(3 + 2\beta)^3 \geq 0$ which can happen only when $\beta \geq 9/2$.
Case 3: $-8/9 < \beta < 0$. In this case, $f'(1) < 0$, $f'(-1) < 0$ and $f'(x)$ has no zero in $]-1, 1[$. Hence by Intermediate Value Theorem, $f'(x) < 0$ for $-1 \leq x \leq 1$. Thus $f(x) \geq 0$ for $-1 \leq x \leq 1$ if and only if

$$f(1) = 27(3 + 2\beta)^3(-9 + 2\beta) \geq 0,$$

which is possible if $\beta \leq -3/2$ or $\beta \geq 9/2$. But this is not possible as $-8/9 < \beta < 0$. Hence, $p(z) \prec q(z)$ if $\beta \geq 9/2$ or $\beta \leq -1.99087$.

(c) Take $A = 1, B = 0$ in (9). Then,

$$u = 4 + \frac{3\beta}{2\cos^2 t/2}, \quad v = 0.$$

So, (5) reduces to $p(x) \geq 0$, $x \in [-1, 1]$, where

$$x = \cos t, \quad p(x) = (-4 + \beta - 4x)(4 + 3\beta + 4x)^3.$$

Clearly, $p'(x) < 0$. So, $p(x) \geq 0$ if and only if $p(1) = (-8 + \beta)(8 + 3\beta)^3 \geq 0$ which is true if $\beta \geq 8$ or $\beta \leq -8/3$. Hence proved. □

In the following theorem, we find the conditions on β so that $p(z) \prec 1 + 4z/3 + 2z^2/3$, whenever $p(z) + \beta z p'(z) p(z) \prec 1 + 4z/3 + 2z^2/3$.

Theorem 2.4. Let p be an analytic function defined on \mathbb{D} with $p(0) = 1$ satisfying

$$p(z) + \beta z p'(z) p(z) \prec 1 + \frac{4z}{3} + \frac{2z^2}{3}, \quad \beta > 0.$$

Then $p(z) \prec 1 + 4z/3 + 2z^2/3$.

Proof. Define the function $q : \mathbb{D} \to \mathbb{C}$ by $q(z) = 1 + 4z/3 + 2z^2/3$ with $q(0) = 1$. Let us define $\phi(w) = \beta/w$ ($\beta > 0$). Consider

$$\text{Re} \phi(q(z)) = \beta \text{Re} \left(\frac{1}{q(z)} \right) > 0.$$

Next, define the function Q as

$$Q(z) := zq'(z)\phi(q(z)) = \frac{\beta z q'(z)}{q(z)} = \frac{4\beta z(1 + z)}{3 + 4z + 2z^2}.$$

From definition of Q, we have

$$\frac{zQ'(z)}{Q(z)} = \frac{3 + 6z + 2z^2}{3 + 7z + 6z^2 + 2z^3} =: K(z).$$

For $t \in [-\pi, \pi]$, we have

$$\text{Re}(K(e^{it})) = \frac{1}{2} + \frac{5 + 4 \cos t}{29 + 40 \cos t + 12 \cos 2t}.$$
Now, we will find minimum value of \(f(x) \) for \(-1 \leq x \leq 1\), where
\[
x = \cos t, \quad f(x) = \frac{5 + 4x}{29 + 40x + 12(2x^2 - 1)}.
\]
A calculation shows that \(f'(x) = 0 \) if \(x = x_1 = -(5 + \sqrt{3})/4 \) or \(x = x_2 = (-5 + \sqrt{3})/4 \). Note that \(x_1 < -1 \) and \(f''(x_2) < 0 \). Also note that \(f(-1) = 1 \) and \(f(1) = 1/9 \). So, \(f(x) \), \(-1 \leq x \leq 1\) attains its minimum value at \(x = 1 \).

Hence, \(\text{Re}(K(e^{it})) \geq 11/18 > 0, \) this shows that \(Q \) is starlike in \(\mathbb{D} \). The result now follows from Lemma 1.3.

We close this section by obtaining the conditions on \(\beta \) so that \(p(z) \prec (1 + z)/(1 - z) \), whenever
\[
p(z) + \beta \frac{zp'(z)}{p(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3}.
\]

Theorem 2.5. Let \(p \) be an analytic function defined on \(\mathbb{D} \) with \(p(0) = 1 \) satisfying
\[
p(z) + \beta \frac{zp'(z)}{p(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad \text{for} \quad \beta \geq 0.
\]

Then \(p(z) \prec (1 + z)/(1 - z) \).

Proof. For \(\beta = 0 \), result hold obviously. Let us assume that \(\beta > 0 \). Define the function \(q : \mathbb{D} \to \mathbb{C} \) by \(q(z) = (1 + z)/(1 - z) \). Also define \(\nu(w) = w \) and \(\varphi(w) = \beta / w \). Clearly, the functions \(\nu \) and \(\varphi \) are analytic in \(\mathbb{C} \) and \(\varphi(w) \neq 0 \).

Consider the functions \(Q \) and \(h \) defined as follows:
\[
Q(z) := zq'(z)\varphi(q(z)) = \frac{\beta q'(z)q(z)}{q(z)} = \frac{2\beta z}{1 - z^2} \quad \text{and} \quad h(z) := \nu(q(z)) + Q(z) = q(z) + Q(z).
\]

Since the mapping \(z/(1 - z^2) \) maps \(\mathbb{D} \) onto the entire plane minus the two half lines \(1/2 \leq y < \infty \) and \(-\infty < y \leq -1/2 \), \(Q(z) \) is starlike univalent in \(\mathbb{D} \). A computation shows that
\[
zh'(z) = q(z) + Q(1 + z)/(1 - z).
\]

Since the mapping \(zh'(z)/Q(z) \) maps \(\mathbb{D} \) onto the plane \(\text{Re} w > 0 \), all the conditions of Lemma 1.2 are fulfilled and hence it follows that \(p(z) \prec q(z) \). In order to complete the proof, we need to show that
\[
\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} < q(z) + \beta \frac{q'(z)q(z)}{q(z)} = 1 + z + \frac{2\beta z}{1 - z}.
\]

So, we only need to show that for \(-\pi \leq t \leq \pi \), the following condition holds
\[
\left| \left(-\frac{2 + \frac{12\beta e^{it}}{1 - e^{2it}} + \frac{6(1 + e^{it})}{1 - e^{it}} - 2}{1 - e^{2it}} \right) \right| \geq 2.
\]
Set
\[w = u + iv = -2 + \frac{12\beta e^{it}}{1 - e^{2it}} + \frac{6(1 + e^{it})}{1 - e^{it}} \]
so that
\[u = -2 \quad \text{and} \quad v = \frac{6(1 + \beta + \cos t)}{\sin t}. \]
Then, substituting the values of \(u \) and \(v \) in (5), we get
\[\frac{144}{(\sin t)^4} \left(4 + 3\beta (2 + \beta) + 6(1 + \beta) \cos t + 2 \cos 2t \right)^2 \geq 0 \]
which is possible for any \(\beta \). Hence, \(p(z) \prec q(z) \) if \(\beta \geq 0 \). □

3. Results associated with the function \(e^z \)

In this section, we compute the sharp conditions on \(\beta \) so that \(p(z) \prec e^z \), whenever
\[1 + \beta z p'(z) \quad \text{or} \quad 1 + \beta \frac{z p'(z)}{p(z)} \quad \text{or} \quad 1 + \beta \frac{z p'(z)}{p^2(z)} \prec 1 + \frac{4z}{3} + \frac{2z^2}{3}, \]
where \(p \) is an analytic function defined on \(\mathbb{D} \) with \(p(0) = 1 \).

Theorem 3.1. Let \(p \) be an analytic function defined on \(\mathbb{D} \) and \(p(0) = 1 \). Let \(\beta \geq 2e/3 \) or \(\beta \leq -2e \). If the function \(p \) satisfies the subordination
\[1 + \beta z p'(z) \prec 1 + \frac{4z}{3} + \frac{2z^2}{3}, \]
then \(p \) also satisfies the subordination \(p(z) \prec e^z \). The result is sharp.

Proof. Let \(q \) be the convex univalent function defined by \(q(z) = e^z \). Then clearly, \(\beta z q'(z) \) is starlike in \(\mathbb{D} \). If the subordination
\[1 + \beta z p'(z) \prec 1 + \beta z q'(z) \]
is satisfied, then \(p(z) \prec q(z) \) by Lemma 1.1. It suffices to show that
\[1 + \frac{4z}{3} + \frac{2z^2}{3} \prec 1 + \beta z q'(z) = 1 + \beta z e^z := h(z). \]
Set \(\psi(z) = 1 + 4z/3 + 2z^2/3. \) Clearly, \(\psi(\mathbb{D}) = \{ w \in \mathbb{C} : |w - 2 + \sqrt{6w - 2}| < 2 \}. \)
The subordination \(\psi(z) \prec h(z) \) holds if \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D}) \). Thus, by using the definition of \(h \) as given in (10), the subordination \(\psi(z) \prec h(z) \) holds if for \(t \in [-\pi, \pi] \), we have
\[|\sqrt{4 + 6\beta e^{it}e^{zit}} - 2| \geq 2. \]
Set \(w = u + iv = 4 + 6\beta e^{it}e^{zit} \). Then, we only need to show that \(|\sqrt{w} - 2| \geq 2 \) which is same as \(|w| \geq 4 \text{Re}(\sqrt{w}) \). On further simplification, we get
\[(u^2 + v^2 - 8u)^2 - 64(u^2 + v^2) \geq 0. \]
Clearly, \(u = 4 + 6\beta e^{\cos t} \cos(t + \sin t) \) and \(v = 6\beta e^{\cos t} \sin(t + \sin t) \). Our problem is now to find all possible values of \(\beta \) for which \(f(t) \geq 0 \) for \(t \in [-\pi, \pi] \), where

\[
f(t) = -16 - 72\beta^2 e^{2\cos t} + 27\beta^4 e^{4 \cos t} - 64\beta e^{\cos t} \cos(t + \sin t).
\]

Since \(f(t) \) is an even function of \(t \). It suffices to find the condition on \(\beta \) for which \(f(t) \geq 0 \) for \(t \in [0, \pi] \). Note that

\[
f(0) = (-2 + e\beta)(2 + 3e\beta)^3 \quad \text{and} \quad f(\pi) = \frac{-(2e - 3\beta)^3(2e + \beta)}{e^4}.
\]

So, \(f(0) \geq 0 \) and \(f(\pi) \geq 0 \) if \(-2e \leq \beta \leq 2e/3 \). If \(-2e \leq \beta \leq 2e/3 \), then \(f \) is a decreasing function of \(t \) and since \(f(\pi) \geq 0 \), we conclude that \(f(t) \geq 0 \) for \(t \in [0, \pi] \) if \(\beta \leq -2e \) or \(\beta \geq 2e/3 \). \(\square \)

Theorem 3.2. If \(p \) is an analytic function defined on \(D \) with \(p(0) = 1 \) satisfying the subordination

\[
1 + \beta \frac{zp'(z)}{p(z)} \prec 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad \text{for} \quad |\beta| \geq 2
\]

then \(p \) also satisfies the subordination \(p(z) \prec e^z \). The result is sharp.

Proof. Let the function \(q : \mathbb{D} \to \mathbb{C} \) be defined by \(q(z) = e^z \). Let us define \(\varphi(w) = \beta/w \) and \(Q(z) = zq'(z)\varphi(q(z)) = \beta z \). Clearly, \(Q(z) \) is starlike in \(\mathbb{D} \). An application of Lemma 1.1 reveals that the subordination

\[
1 + \beta \frac{zp'(z)}{p(z)} \prec 1 + \beta \frac{zq'(z)}{q(z)}
\]

implies \(p(z) \prec q(z) \). Now, our result is established if we prove

\[
\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} \prec 1 + \beta \frac{zq'(z)}{q(z)} = 1 + \beta z := h(z).
\]

Since the subordination \(\psi(z) \prec h(z) \) holds if \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \overline{\psi(\mathbb{D})} \), we only need to show that for \(t \in [-\pi, \pi] \),

\[
\left| \sqrt{4 + 6\beta e^t} - 2 \right| \geq 2.
\]

Set \(w = u + iv = 4 + 6\beta e^t \) so that \(u = 4 + 6\beta \cos t \) and \(v = 6\beta \sin t \). Then, proceeding as in Theorem 3.1, we need to show that (12) holds. After substituting the values of \(u \) and \(v \) in (12), we need to find the values of \(\beta \) for which \(g(t) \geq 0 \) for \(t \in [-\pi, \pi] \), where

\[
g(t) = -16 - 72\beta^2 + 27\beta^4 - 64\beta \cos t.
\]

Note that \(g(t) \) is an even function of \(t \). So, we only need to consider \(g(t) \) for \(t \in [0, \pi] \). Also note that \(g'(t) = 64\beta \sin t \). Let us first assume that \(\beta > 0 \). In this case, \(g(t) \) is an increasing function. Therefore, \(g(t) \geq 0 \) if and only if \(g(0) = (-2 + \beta)(2 + 3\beta)^3 \geq 0 \) which can happen only when \(\beta \geq 2 \). Let us next assume that \(\beta < 0 \). In this case, \(g(t) \) being decreasing function, is non negative
if and only if $g(\pi) = (2 + \beta)(-2 + 3\beta)^3$ is non negative which is possible if $\beta \leq -2$. Hence, $p(z) < q(z)$ if $|\beta| \geq 2$. \hfill \Box

Theorem 3.3. Let p be an analytic function defined on D and $p(0) = 1$. Let $\beta \geq 2e$ or $\beta \leq -2e/3$. If the function p satisfies the subordination

$$1 + \beta \frac{zp'(z)}{p'(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3},$$

then $p(z) \prec e^z$. The result is sharp.

Proof. Define the function $q : D \to \mathbb{C}$ by $q(z) = e^z$ and consider the function $Q(z) = \beta z q'(z)/q^2(z) = \beta ze^{-z}$. For $z = x + iy \in D$, we have

$$\text{Re} \left(\frac{zQ'(z)}{Q(z)} \right) = \text{Re}(1-z) = 1 - x > 0.$$

Hence, Q is starlike in D. Now, it is easy to see that by Lemma 1.1, the subordination

$$1 + \beta \frac{zp'(z)}{p'(z)} < 1 + \beta \frac{zq'(z)}{q^2(z)}$$

implies $p(z) \prec q(z)$. So, our result will be proved if we can prove

$$\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} + 1 + \beta \frac{zq'(z)}{q^2(z)} = 1 + \beta ze^{-z} := h(z).$$

Thus, we only need to show that $\partial h(D) \subset \mathbb{C} \setminus \{0\}$ which is equivalent to show that for $t \in [-\pi, \pi]$,

$$\left| \frac{\sqrt{4 + 6\beta e^{it}e^{-e^{-t}}}}{(1 + \beta e^{it}e^{-e^{-t}})} - 2 \right| \geq 2.$$

Set $w = u + iv = 4 + 6\beta e^{it}e^{e^{-t}}$. Then, proceeding as in Theorem 3.1, we need to prove (12). Clearly, $u = 4 + 6\beta e^{-\cos t} \cos(t - \sin t)$ and $v = 6\beta e^{-\cos t} \sin(t - \sin t)$. Our problem reduces to find all possible values of β for which $k(t)$ is non negative in $[-\pi, \pi]$, where

$$k(t) = -16 - 72\beta^2 e^{-2 \cos t} + 27\beta^4 e^{-4 \cos t} - 64\beta e^{-\cos t} \cos(t - \sin t).$$

Observe that $k(-t) = k(t)$ for $t \in [-\pi, \pi]$. Thus, it is sufficient to find the values of β for which $k(t)$ is non negative in $[0, \pi]$. Note that

$$k(0) = \frac{(2e + \beta)(2e + 3\beta)^3}{e^4} \quad \text{and} \quad k(\pi) = (2 + e\beta)(-2 + 3e\beta)^3.$$

Clearly, $k(0)$ and $k(\pi)$ both are non negative if $\beta \leq -2e/3$ or $\beta \geq 2e$. Also, if $\beta \leq -2e/3$ or $\beta \geq 2e$, then k is an increasing function of t and $k(0)$ is non negative. Hence, $k(t) \geq 0$ for $t \in [0, \pi]$ if $\beta \leq -2e/3$ or $\beta \geq 2e$. \hfill \Box
4. Results associated with the lemniscate of Bernoulli

In this section, we compute the conditions on β so that $p(z) \prec \sqrt{1 + z}$, whenever

$$1 + \beta \frac{zp'(z)}{p^k(z)} \quad (k = 0, 1, 2) \quad \text{or} \quad p(z) + \beta \frac{zp'(z)}{p(z)} \prec 1 + \frac{4z}{3} + \frac{2z^2}{3},$$

where p is an analytic function defined on \mathbb{D} with $p(0) = 1$.

Theorem 4.1. Let $\beta \geq 4\sqrt{2}$. Let p be an analytic function defined on \mathbb{D} with $p(0) = 1$ satisfying

$$1 + \beta zp'(z) \prec 1 + 4z^3 + 2z^2,$$

then $p(z) \prec \sqrt{1 + z}$. The result obtained is sharp.

Proof. Define the function $q : \mathbb{D} \to \mathbb{C}$ by $q(z) = \sqrt{1 + z}$ with $q(0) = 1$. Since $q(\mathbb{D}) = \{w : |w^2 - 1| < 1\}$ is the right half of the lemniscate of Bernoulli, $q(\mathbb{D})$ is a convex set and hence q is convex and $zq'(z)$ is starlike in \mathbb{D}. It follows from Lemma 1.1, that the subordination

$$1 + \beta zp'(z) \prec 1 + \beta zq'(z)$$

implies $p(z) \prec q(z)$. Now, our result is established if we prove the following:

$$\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} \prec 1 + \beta zq'(z) = 1 + \frac{\beta z}{2\sqrt{1 + z}} := h(z).$$

Now, proceeding as in earlier sections, it is enough to show that $\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D})$ which is equivalent to show that for $t \in [-\pi, \pi]$,

$$\left| \sqrt[4]{4 + \frac{3\beta e^{it}}{\sqrt{1 + e^{it}}} - 2} \right| \geq 2.$$

Taking $w = u + iv = 4 + 3\beta e^{it}/(\sqrt{1 + e^{it}})$. Then, we only need to show that

$$(13) \quad (u^2 + v^2 - 8u)^2 - 64(u^2 + v^2) \geq 0.$$

A calculation shows that

$$u = 4 + \frac{3\beta \cos(3t/4)}{\sqrt{2} \cos t/2} \quad \text{and} \quad v = \frac{3\beta \sin(3t/4)}{\sqrt{2} \cos t/2}.$$

Using these values in (13), our problem reduces to find all possible values of β for which $f(t) \geq 0$ for $t \in [-\pi, \pi]$, where

$$f(t) = -\frac{3}{4} \left(512 - 27\beta^4 + 512 \cos t + 64\beta(9\beta \cos(t/2) + 16\sqrt{2} \cos^{3/2}(t/2) \cos(3t/4)) \right).$$
Note that \(f(t) = f(-t) \) for any \(t \), so it is sufficient to consider the interval \(0 \leq t \leq \pi \). Also note that \(f''(t) \geq 0 \) for \(\beta > 0 \), so \(f(t) \) attains minimum value at \(t = 0 \). Clearly,
\[
 f(0) = \frac{-3}{4}(1024 + 1024\sqrt{2}\beta + 576\beta^2 - 27\beta^4) \geq 0 \quad \text{for} \quad \beta \geq 4\sqrt{2}.
\]

Thus, \(f(t) \geq 0 \) if \(\beta \geq 4\sqrt{2} \). This completes the proof. \(\square \)

Theorem 4.2. Let \(\beta \leq -4 \) or \(\beta \geq 8 \). Let \(p \) be an analytic function defined on \(\mathbb{D} \) with \(p(0) = 1 \) satisfying
\[
 1 + \beta z p'(z) \prec 1 + 4z^3 + 2z^2/3,
\]
then \(p(z) \prec \sqrt{1 + z} \). The result obtained is sharp.

Proof. Let the function \(q : \mathbb{D} \to \mathbb{C} \) be defined by \(q(z) = \sqrt{1 + z} \) with \(q(0) = 1 \).
Let us define \(\psi(w) = \beta/w \) and \(Q(z) = zq'(z)q(z) = \beta z/(1 + z) \) which maps \(\mathbb{D} \) onto \(\text{Re } w < \beta/4 \). So, \(Q(z) \) is starlike in \(\mathbb{D} \). An application of Lemma 1.1 reveals that the subordination
\[
 1 + \beta z p'(z) \prec 1 + \beta z q'(z)\quad \text{implies } p(z) \prec q(z).
\]
Now, our result is established if we prove
\[
 (14) \quad \psi(z) := 1 + 4z/3 + 2z^2/3 < 1 + \beta z q'(z)/q(z) = 1 + \beta z/2(1 + z) := h(z).
\]

Hence, we only need to show that \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D}) \) which is same as to show that for \(t \in [-\pi, \pi] \),
\[
 \sqrt{4 + 3\beta e^{it}}/1 + e^{it} - 2 \geq 2.
\]
Set \(w = u + iv = 4 + 3\beta e^{it}/(1 + e^{it}) \). Then, proceeding as in Theorem 4.1, our target is to prove (13). Clearly,
\[
 u = 4 + \frac{3\beta}{2} \quad \text{and} \quad v = \frac{3\beta}{2} \tan \frac{t}{2}.
\]

On substituting \(u \) and \(v \) in (13), we get
\[
 \frac{1}{16} \left(-64 + 9\beta^2 + 9\beta^2 \left(\frac{1 - x^2}{x^2} \right) \right)^2 - 16 \left(8 + 3\beta \right)^2 + 9\beta^2 \left(\frac{1 - x^2}{x^2} \right) \geq 0,
\]
where \(x = \cos t/2 \). So, our problem reduces to find the values of \(\beta \) for which \(G(x) \geq 0 \) for \(x \in [0, 1] \), where
\[
 G(x) = -12288(1 + \beta)x^4 - 3456\beta^2x^2 + 81\beta^4.
\]
A calculation shows that
\[
 G'(x) = -768(9x\beta^2 + 64x^3(1 + \beta))
\]
and hence $G'(0) = G'(-3\beta/(8\sqrt{1-\beta})) = 0$. Let us first assume that $\beta \geq -1$. Then, $G(x)$ is a decreasing function of $x \in [0, 1]$. Consequently, we have $G(x) \geq 0$ for $x \in [0, 1]$ provided $G(1) = 3(-8 + \beta)(8 + 3\beta)^3 \geq 0$, which is equivalent to $\beta \geq 8$. Next, assume that $\beta < -1$. In this case, $G''(-3\beta/(8\sqrt{1-\beta})) = 13824/\beta^2 > 0$. Thus $G(x)$ attains its minimum value at $x = -3\beta/(8\sqrt{1-\beta})$, it follows that $G(x) \geq 0$ for $0 \leq x \leq 1$ if and only if

$$G(-3\beta/(8\sqrt{1-\beta})) = \frac{81\beta^2(4+\beta)}{1+\beta} \geq 0,$$

provided $\beta \leq -4$. Hence, $p(z) \prec q(z)$ for $\beta \leq -4$ or $\beta \geq 8$. □

Theorem 4.3. Let p be an analytic function defined on D and $p(0) = 1$. If the function p satisfies the subordination

$$1 + \beta \frac{zp'(z)}{p^2(z)} \prec 1 + \frac{4z}{3} + \frac{2z^2}{3}, \text{ for } \beta \geq 8\sqrt{2}$$

then $p(z) \prec \sqrt{1+z}$. The result is sharp.

Proof. Define the function $q : D \to \mathbb{C}$ by $q(z) = \sqrt{1+z}$ and consider the function $Q(z) = \beta zq'(z)/q^2(z) = \beta z/2(1+z)^{3/2}$. Clearly,

$$\frac{zQ'(z)}{Q(z)} = 1 - \frac{3z}{2(1+z)},$$

which maps D onto plane $\text{Re } w > 1/4$. Hence, Q is starlike in D. An application of Lemma 1.1 reveals that the subordination

$$1 + \beta \frac{zp'(z)}{p^2(z)} \prec 1 + \beta \frac{zq'(z)}{q^2(z)}$$

implies $p(z) \prec q(z)$. So, our result will be proved if we can prove

$$\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} \prec 1 + \beta \frac{zq'(z)}{q^2(z)} = 1 + \beta \frac{z}{2(1+z)^{3/2}} := h(z).$$

So, we only need to show that $\partial h(D) \subset \mathbb{C} \setminus \psi(D)$ which is equivalent to show that for $t \in [-\pi, \pi]$,

$$\left| \sqrt{4 + \frac{3\beta e^t}{(1+e^t)^{3/2}}} - 2 \right| \geq 2.$$

Set $w = u + iv = 4 + (3\beta e^t)/(1+e^t)^{3/2}$. Then, proceeding as in Theorem 4.1, we have to find β so that (13) holds. Clearly,

$$u = 4 + 3\beta \frac{\cos t/4}{(2 \cos t/2)^{3/2}}, \quad v = 3\beta \frac{\sin t/4}{(2 \cos t/2)^{3/2}}.$$

Our problem reduces to find all possible values of β for which $k(t)$ is non negative in $[-\pi, \pi]$, where

$$k(t) = 3 \left\{ -16384 - 8192\sqrt{2}\beta \frac{\cos^4 t}{4 \sec^3 t} - 2304\beta^2 \sec^3 \frac{t}{2} + 27\beta^4 \sec^6 \frac{t}{2} \right\}.$$
Observe that \(k(-t) = k(t) \) for \(t \in [-\pi, \pi] \). Thus, it is sufficient to find the values of \(\beta \) for which \(k(t) \) is non negative in \([0, \pi]\). For \(\beta \geq 8\sqrt{2} \), \(k \) is an increasing function of \(t \) and \(k(0) = -768 - 384\sqrt{2}\beta - 108\beta^2 + 81\beta^4/64 \) is non negative. Hence, \(k(t) \geq 0, \ t \in [0, \pi] \) for \(\beta \geq 8\sqrt{2} \). □

Theorem 4.4. Let \(p \) be an analytic function defined on \(\mathbb{D} \) with \(p(0) = 1 \) satisfying

\[
p(z) + \beta \frac{zp'(z)}{p(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad \text{for} \quad \beta \geq 12
\]

then \(p(z) \prec \sqrt{1 + z} \).

Proof. Define the function \(q : \mathbb{D} \to \mathbb{C} \) by \(q(z) = \sqrt{1 + z} \). Consider the subordination

\[
p(z) + \beta \frac{zp'(z)}{p(z)} \prec q(z) + \beta \frac{zq'(z)}{q(z)}.
\]

Thus, in view of Lemma 1.2, the above subordination can be written as (1) by defining the functions \(\nu \) and \(\varphi \) as

\[
\nu(w) = w \quad \text{and} \quad \varphi(w) = \frac{\beta}{w}, \ (\beta \neq 0).
\]

Clearly, the functions \(\nu \) and \(\varphi \) are analytic in \(\mathbb{C} \) and \(\varphi(w) \neq 0 \). Let the functions \(Q(z) \) and \(h(z) \) be defined as follows:

\[
Q(z) := zq'(z)\varphi(q(z)) = \frac{\beta z q'(z)}{q(z)} = \frac{\beta z}{2(1 + z)} \quad \text{and} \quad h(z) := \nu(q(z)) + Q(z) = \sqrt{1 + z} + \frac{\beta z}{2(1 + z)} .
\]

Since the mapping \(Q(z) \) maps \(\mathbb{D} \) onto the plane \(\text{Re } w < \beta/4 \), \(Q(z) \) is starlike univalent in \(\mathbb{D} \). A computation shows that

\[
\frac{zh'(z)}{Q(z)} = \frac{\sqrt{1 + z}}{\beta} + \frac{1}{1 + z}.
\]

Now, the mapping \(1/(1 + z) \) maps \(\mathbb{D} \) onto plane \(\text{Re } w > 1/2 \) and \(\text{Re}(\sqrt{1 + z}) > 0, \ z \in \mathbb{D} \). Therefore, \(\text{Re}(zh'/Q(z)) > 0, \ z \in \mathbb{D} \) if \(\beta > 0 \). Thus, all the conditions of Lemma 1.2 are satisfied and hence, it follows that \(p(z) \prec q(z) \). In order to complete the proof, we need to prove that

\[
\psi(z) := 1 + \frac{4z}{3} + \frac{2z^2}{3} \prec q(z) + \beta \frac{zq'(z)}{q(z)} = \sqrt{1 + z} + \frac{\beta z}{2(1 + z)} = h(z).
\]

So, we only need to show that \(\partial h(\mathbb{D}) \subset \mathbb{C} \setminus \psi(\mathbb{D}) \) which is equivalent to show that for \(t \in [-\pi, \pi] \),

\[
\sqrt{-2 + 6\sqrt{1 + e^t} + \frac{3\beta e^t}{1 + e^t} - 2} \geq 2.
\]
Thus, we have to show that
\[
\left| -2 + 6\sqrt{1 + e^{it}} + \frac{3\beta e^{it}}{1 + e^{it}} \right| \geq 16.
\]
Now,
\[
\left| -2 + 6\sqrt{1 + e^{it}} + \frac{3\beta e^{it}}{1 + e^{it}} \right| = \left| 6e^{it/4}\sqrt{2\cos\frac{t}{2}} + \frac{3\beta e^{it/2}}{2\cos\frac{t}{2}} - 2 \right|
\geq \Re \left(6e^{it/4}\sqrt{2\cos\frac{t}{2}} + \frac{3\beta e^{it/2}}{2\cos\frac{t}{2}} - 2 \right)
= 6\cos\frac{t}{4}\sqrt{2\cos\frac{t}{2}} + \frac{3\beta}{2} - 2
\geq \frac{3\beta}{2} - 2 \geq 16 \text{ for } \beta \geq 12.
\]
Hence, \(p(z) < q(z) \) and this completes the proof.

5. Applications

In this section we give sufficient conditions for functions \(f \in A \) to belong to the various subclasses of starlike functions.

Theorem 5.1. Let \(f \in A \) and \(\beta_0 = \sqrt{(4\sqrt{3} + 8)/(3\sqrt{3})} \simeq 1.6947 \). Then following are the sufficient conditions for \(f \in S^* \).

1. The function \(f \) satisfies the subordination
\[
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (|\beta| \geq \beta_0).
\]

2. The function \(f \) satisfies the subordination
\[
1 - \beta + \beta \frac{1}{f'(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \leq -4/3 \text{ or } \beta \geq 4).
\]

3. The function \(f \) satisfies the subordination
\[
\frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 0).
\]

Proof. Let the function \(p : \mathbb{D} \to \mathbb{C} \) be defined by \(p(z) = zf'(z)/f(z) \). Then \(p \) is analytic in \(\mathbb{D} \) with \(p(0) = 1 \). A calculation shows that
\[
\frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}.
\]
The results follow respectively from Theorems 2.2(a), 2.3(a) and 2.5.

Theorem 5.2. Let \(f \in A \) and \(\beta_0 = \sqrt{(4\sqrt{3} + 8)/(3\sqrt{3})} \simeq 1.6947 \). Then following are the sufficient conditions for \(z^2f'(z)/f''(z) \in P \).
(1) The function \(f \) satisfies the subordination
\[
1 + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (|\beta| \geq \beta_0).
\]

(2) The function \(f \) satisfies the subordination
\[
\frac{z^2f'(z)}{f^2(z)} + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 0).
\]

Proof. The two parts of the theorem follows by taking \(p(z) = z^2f'(z)/f^2(z) \) in Theorems 2.2(a) and 2.5 respectively. \(\square \)

Theorem 5.3. Let \(f \in A \) and \(0 \leq \alpha < 1 \).

1. Let \(\beta \leq -4/(1-\alpha) \) or \(\beta \geq 4/(1-\alpha) \). If the function \(f \) satisfies the subordination
\[
1 + \beta \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*(\alpha) \).

2. Let \(\beta \leq -9/2 \) or \(\beta \geq \beta_0 \), where \(\beta_0 \) is given by Theorem 2.1. If the function \(f \) satisfies the subordination
\[
1 + \beta \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*[1/2,-1/2] \).

3. Let \(\beta \leq \beta_0 \) or \(\beta \geq 9/2 \), where \(\beta_0 \) is given by Theorem 2.3. If the function \(f \) satisfies the subordination
\[
1 - \beta + \beta \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*[1/2,-1/2] \).

4. Let \(|\beta| \geq 2/(1-\alpha) \). If the function \(f \) satisfies the subordination
\[
1 + \beta \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*[1-\alpha,0] \).

5. Let \(\beta \leq -2 \) or \(\beta \geq 4 \). If the function \(f \) satisfies the subordination
\[
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*[1,0] \).

6. Let \(\beta \leq -8/3 \) or \(\beta \geq 8 \). If the function \(f \) satisfies the subordination
\[
1 - \beta + \beta \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*[1,0] \).
Proof. The parts of the theorem are obtained by taking \(p(z) = zf'(z)/f(z) \) in Theorems 2.1(c), 2.1(a), 2.3(b), 2.1(b), 2.2(b) and 2.3(c) respectively. \(\square \)

Theorem 5.4. Let \(f \in A \) and \(0 \leq \alpha < 1 \).

1. If \(f \) satisfies \(1 + \beta zf''(z) < 1 + 4z/3 + 2z^2/3 \) \((\beta \leq -4/(1 - \alpha) \) or \(\beta \geq 4/(1 - \alpha)) \), then \(f' < (1 + (1 - 2\alpha)z)/(1 - z) \).
2. If \(f \) satisfies \(1 + \beta zf''(z) < 1 + 4z/3 + 2z^2/3 \) \((\beta \leq -9/2 \) or \(\beta \geq \beta_0 \), where \(\beta_0 \) is given by Theorem 2.1 \), then \(f' < (2 + z)/(2 - z) \).
3. If \(f \) satisfies \(1 + \beta zf''(z) < 1 + 4z/3 + 2z^2/3 \) \((|\beta| \geq 2/(1 - \alpha)) \), then \(f' < 1 + (1 - \alpha)z \).
4. If \(f \) satisfies
\[
1 + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \leq -2 \) or \(\beta \geq 4),
\]
then \(z^2 f'(z)/f^2(z) < 1 + z \).

Proof. The first three parts follows from Theorems 2.1(c), 2.1(a) and 2.1(b) respectively by taking \(p(z) = f'(z) \). Next, applying Theorem 2.2(b) to the function \(p(z) = z^2 f'(z)/f^2(z) \) yields the last part of the theorem. \(\square \)

Next theorem is an application of Theorem 2.4.

Theorem 5.5. Let \(f \in A \) and \(\beta > 0 \).

1. If \(f \) satisfies the subordination
\[
\frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then \(f \in S^*_C \).
2. If \(f \) satisfies
\[
\frac{z^2 f'(z)}{f^2(z)} + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3},
\]
then
\[
\frac{z^2 f'(z)}{f^2(z)} < 1 + \frac{4z}{3} + \frac{2z^2}{3}.
\]

The three parts of the next theorem are application of Theorems 3.1, 3.2 and 3.3 respectively.

Theorem 5.6. Let \(f \in A \). Then following are the sufficient conditions for \(f \in S^*_C \).

1. Let \(\beta \leq -2e \) or \(\beta \geq 2e/3 \). The function \(f \) satisfies the subordination
\[
1 + \beta \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3}.
\]
(2) Let $|\beta| \geq 2$. The function f satisfies the subordination
\[
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3}.
\]

(3) Let $\beta \leq -\frac{2e}{3}$ or $\beta \geq \frac{2e}{3}$. The function f satisfies the subordination
\[
1 - \beta + \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} < 1 + \frac{4z}{3} + \frac{2z^2}{3}.
\]

The two parts of the next theorem are application of Theorems 3.1 and 3.2 respectively.

Theorem 5.7. Let $f \in A$.

1. If f satisfies $1 + \beta zf''(z) < 1 + 4z/3 + 2z^2/3$ ($\beta \leq -2e$ or $\beta \geq 2e/3$), then $f' \prec e^z$.
2. If f satisfies
\[
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (|\beta| \geq 2),
\]
then
\[
\frac{z^2 f'(z)}{f^2(z)} \prec e^z.
\]

The remaining results are application of Section 4.

Theorem 5.8. Let $f \in A$. Then following are the sufficient conditions for $f \in S_L^*$.

1. The function f satisfies the subordination
\[
1 + \beta \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 4\sqrt{2}).
\]

2. The function f satisfies the subordination
\[
1 + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \leq -4 \text{ or } \beta \geq 8).
\]

3. The function f satisfies the subordination
\[
1 - \beta + \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 8\sqrt{2}).
\]

4. The function f satisfies the subordination
\[
\frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 12).
\]

Theorem 5.9. Let $f \in A$.

1. If the function f satisfies $1 + \beta zf''(z) < 1 + 4z/3 + 2z^2/3$, $\beta \geq 4\sqrt{2}$, then $f' \prec \sqrt{1 + z}$.

(2) If the function \(f \) satisfies
\[
1 + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \leq -4 \text{ or } \beta \geq 8),
\]
then
\[
\frac{z^2f'(z)}{f^2(z)} < \sqrt{1+z}.
\]

(3) If the function \(f \) satisfies
\[
\frac{z^2f'(z)}{f^2(z)} + \beta \left(\frac{(zf(z))''}{f'(z)} - \frac{2zf'(z)}{f(z)} \right) < 1 + \frac{4z}{3} + \frac{2z^2}{3} \quad (\beta \geq 12),
\]
then
\[
\frac{z^2f'(z)}{f^2(z)} < \sqrt{1+z}.
\]

References

V. Ravichandran
Department of Mathematics
University of Delhi
Delhi-110007, India
E-mail address: vravi@maths.du.ac.in

Kanika Sharma
Department of Mathematics
University of Delhi
Delhi-110007, India
E-mail address: kanika.divika@gmail.com