J. Chosun Natural Sci. Vol. 8, No. 2 (2015) pp. 145 *[−]* ¹⁴⁶ http://dx.doi.org/10.13160/ricns.2015.8.2.145

Certain Polynomials with Weighted Sums

Seon-Hong Kim*†*

Abstract

In this note, we provide some examples of polynomials $z^n - p(z)$, where $p(z) = \sum_{k=1}^{n-1} a_k z^k$, and $\sum_{k=1}^{n-1} a_k z^k = 1$, $a_k \ge 0$ for each k such that $p(z)$ has all its zeros on $|z| = c < 1$, and $zⁿ - p(z)$ has all its zeros on two circles $|z| = 1$ and $|z| = d < 1$. $p(z) = \sum_{k=1}^{n-1} a_k z^k$ $k=0$ $=\sum_{k=1}^{n-1} a_k z^k$, and $\sum_{k=1}^{n-1} a_k z^k$ $k=0$ $\sum^{n-1} a_k z^k = 1$

Keywords: Polynomial, Weighted Sum

1. Introduction

Throughout this paper, is an integer ≥ 3 , $p > 1$, and we denote $C(r)$ by the circle of radius r with center the origin. It follows from Enestrm-Kakeya theorem^[1] (see p. 136 of [1] for the statement and its proof) to

$$
\frac{z^n - \sum_{k=0}^{n-1} a_k z^k}{z - 1} \tag{1}
$$

where $\sum_{k=0}^{n-1} a_k = 1$, $a_k \ge 0$ for each k that all zeros of (1) do not lie outside $C(1)$. To what extent, are there pol- $\sum_{k=1}^{n-1} a_k = 1$

$$
p(z) = \sum_{k=0}^{n-1} a_k z^k
$$

ynomials

where $\sum_{k=0}^{n-1} a_k = 1$, $a_k \ge 0$ for each k with all its zeros on $\sum_{k=1}^{n-1} a_k = 1$

 $|z| = c < 1$ such that $z^n - p(z)$ has all its zeros on two circles $|z| = 1$ and $|z| = d < 1$? Whether or not certain polynomials have all their zeros on some circles is one of the most fundamental questions in the theory of distribution of polynomial zeros. $Kim^[2] studied polynomials$ of type (1),

$$
z^n-\sum_{k=0}^{n-1}a_kz^k
$$

whose all zeros except for $z = 1$ lie on $C(1/p)$. For convenience, we call these polynomials $C(1/p)$ -polynomials,

and
$$
\sum_{k=0}^{n-1} a_k z^k
$$
 their weighted sums, respectively.

Kim^[2] showed that, given $p>1$, there exist $C(1/p)$ -polynomials whose the degree of weighted sum is $n-1$. However, by estimating some coefficients of lacunary polynomials, he obtained sufficient conditions for nonexistence of certain lacunary $C(1/p)$ -polynomials: If $p>n-1$, then there does not exist $C(1/p)$ -polynomials whose the degree of weighted sums is $n-2$. Also, if

$$
2p4 - (n-1)(n-2)p2 - 2(n-1)p - (n-1)(n-2) > 0
$$

then there does not exist $C(1/p)$ -polynomials whose the degree of weighted sum is $n-3$. In case of the degree of weighted sum n−2, he also showed that, by giving an example, his sufficient condition is best possible in the sense that, for all $n\geq 3$, there exist $C(1/p)$ -polynomials with the degree of the weighted sums $n-2$.

2. Results and Discussion

In this section, we provide some examples of polynomials $z^n - p(z)$, where

$$
p(z) = \sum_{k=0}^{n-1} a_k z^k
$$

Department of Mathematics, Sookmyung Women's University, Seoul, 140-742 Korea

[†] Corresponding author : shkim17@sookmyung.ac.kr (Received : June 4, 2015, Accepted : June 25, 2015)

and $\sum_{k=0}^{n-1} a_k = 1$, $a_k \ge 0$ for each k such that $p(z)$ has all $\sum_{k=1}^{n-1} a_k = 1$

its zeros on $|z| = c < 1$, and $zⁿ - p(z)$ has all its zeros on two circles $|z| = 1$ and $|z| = d < 1$.

Proposition Let k be a positive integer. If $n = 3k$ or $n = 5k$, then there are weighted polynomial sums $p(z)$ with all its zeros on $|z| = c < 1$ such that $z^n - p(z)$ has all its zeros on two circles $|z| = 1$ and $|z| = d < 1$.

Proof For $n = 3k$ for some integer $k \ge 1$, we consider

$$
u(z) := z^{3k} - \frac{1}{n^2} (1 + (n-1)z^k + n(n-1)z^{2k})
$$

=
$$
\frac{(z^k - 1)((3kz^k)^2 + 3kz^k + 1)}{(3k)^2}
$$

Then the weighted sum

$$
\frac{1}{n^2}(1 + (n-1)z + n(n-1)z^2)
$$

has its zeros

$$
\frac{1 - n \pm i \sqrt{(-1 + n)(1 + 3n)}}{2(-1 + n)n}
$$

with modulus $\sqrt{\frac{1}{(-1+n)n}}$, and so all zeros of (2) have modulus $\left(\frac{1}{(-1+3k)3k}\right)^{1/2k}$. Also $(3kz^k)^2 + 3kz^k + 1 = 0$ implies that $|3kz^k| = 1$ and so $|z| = \left(\frac{1}{3k}\right)^{1/k}$, which implies that all zeros of $u(z)$ lie on two circles $C(1)$ and $C\left(\left(\frac{1}{3k}\right)^{1/k}\right)$. For $n = 5k$ for some integer $k \ge 1$, we consider

$$
v(z) := z^{5k} - \frac{1}{n^2} \left(1 + (n-1)z^{2k} + n(n-1)z^{4k} \right)
$$

=
$$
\frac{(z^k - 1)(25k^2z^{4k} + 5kz^{3k} + 5kz^{2k} + z^k + 1)}{25k^2}
$$

Putting $y = z^k$ in the second factor of the numerator in above gives

$$
25k^2y^4 + 5ky^3 + 5ky^2 + y + 1 = 0
$$

whose roots can be computed by

$$
\frac{1}{20k} \left(-1 \pm \sqrt{1 + 20k} \pm i \sqrt{-2 + 60k + 2\sqrt{1 + 20k}} \right)
$$

and their moduli are all equal to $\sqrt{\frac{1}{51}}$. So all zeros of $v(z)$ lie on two circles $C(1)$ and $C\left(\left(\frac{1}{5k}\right)^{1/5}\right)$. Finally as in the case when $n = 3k$, we can compute that the weighted sum $\frac{1}{2}(1+(n-1)z^{2k}+n(n-1)z^{4k})$ has all its zeros $\left(\frac{1}{(-1+5k)5k}\right)^{1/(4k)}$. This completes the proof. $\frac{1}{5k}$ $\frac{1}{n^2}(1+(n-1)z^{2k}+n(n-1)z^{4k})$

References

- [1] M. Marden, "Geometry of Polynomials, Mathematical Surveys Number III", American Mathematical Society, Providence, Rhode Island, 1966.
- [2] S.-H. Kim, "Polynomials with weighted sum", Publ. Math-Debrecen, Vol. 66, pp. 303-311, 2005.

J. Chosun Natural Sci., Vol. 8, No. 2, 2015