DOI QR코드

DOI QR Code

Radiation Damage of Semiconductor Device by X-ray

엑스선에 의한 반도체 소자의 방사선 손상

  • Kim, D.S. (Department of Physics, Myongji University) ;
  • Hong, H.S. (Department of Physics, Myongji University) ;
  • Park, H.M. (Department of Physics, Myongji University) ;
  • Kim, J.H. (Department of Physics, Myongji University) ;
  • Joo, K.S. (Department of Physics, Myongji University)
  • Received : 2015.03.09
  • Accepted : 2015.06.15
  • Published : 2015.06.30

Abstract

Recently, Due to the increased industry using radiation inspection equipment in the semiconductor, this demand of technology research is increasing. Although semiconductor inspection equipment is using low energy X-ray from 40 keV to 120 keV, Studies of radiation damage about the low energy X-ray are lacking circumstance in our country. Therefore, It is study that BJT (bipolar junction transistor) of one type of semiconductor elements are received radiation damage by low energy X-ray. BJT were used to the NXP semiconductor company's BC817-25 (NPN type), and Used the X-ray generator for the irradiation. Radiation damage of BJT was evaluated that confirm to analyse change of collector-emitter voltage of before and after X-ray irradiation when current gain fixed to 10. X-ray generator of tube voltage was setting 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp and irradiation time was setting 180s, 360s, 540s into 180s intervals. As the result, We confirmed radiation damage in BJT by low energy X-ray under 120 keV energy, and Especially the biggest radiation damage was appeared at the 80 kVp. It is expected that ELDRS (enhanced low dose rate sensitivity) phenomenon occurs on the basis of 80 kVp. This studies expect to contribute effective dose administration of semiconductor inspection equipment using low energy X-ray, Also Research and Development of X-ray filter.

최근 방사선을 이용한 반도체 검사장비 산업의 증가로 이에 대한 기술 연구 수요 또한 증가하고 있다. 반도체 검사장비는 저에너지 엑스선으로 최저 40 keV에서 최고 120 keV의 에너지 영역을 사용하고 있지만, 국내에서는 저에너지 엑스선이 주는 방사선 손상 연구가 미흡한 상황이다. 따라서 본 연구는 저에너지 엑스선을 이용하여 반도체 소자의 한 종류인 BJT (bipolor junction transistor)가 받는 방사선 손상에 관한 것이다. BJT는 NXP반도체사의 BC817-25(NPN type)를 사용하였으며, 엑스선 발생장치를 사용하여 엑스선을 조사하였다. BJT의 방사선 손상 여부는 엑스선 조사 전과 후에 전류 이득을 10으로 고정하고, 콜렉터 전류에 따른 콜렉터-이미터 전압을 측정하여 변화 정도를 분석하여 확인하였다. 엑스선 발생장치의 관전압은 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp 등 다섯 가지로, 조사 시간은 60초, 120초, 180초, 360초, 540초 등 다섯 가지로 변수를 두었다. 실험 결과 BJT에서 저에너지 엑스선 즉, 120 keV 이하의 엑스선을 조사하여도 방사선 손상이 발생하는 것을 확인하였고, 특히 80 kVp에서 가장 큰 방사선 손상이 발생되었다. 이는 ELDRS (enhanced low dose rate sensitivity) 현상이 80 kVp을 기준으로 발생되는 것으로 판단된다. 본 연구의 결과는 저에너지 엑스선을 이용한 반도체 검사장비의 효율적인 선량관리와 엑스선 여과기의 연구 및 개발에 기여할 것으로 기대한다.

Keywords

References

  1. McDonald PT, Henson BG, Stapor WJ, Mark Harris. Destructive heavy ion SEE Investigation of 3 IGBT devices. Radiation Effects Data Workshop. 2000 July 11-15.
  2. Srour JR, Cheryl J. Marshall, Paul W. Marshall. Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci. 2003;50(3):653-670. https://doi.org/10.1109/TNS.2003.813197
  3. Daniel MF. Total ionizing effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans Nucl Sci. 2013;60(3):1706-1730 https://doi.org/10.1109/TNS.2013.2259260
  4. Harold PH, Ronald LP, Steven CW, Marty RS, James RS, Arthur HE, Charles EH, Thomas RM. Mechanisms for radiation dose-rate sensitivity of bipolar transistors. IEEE Trans Nucl Sci. 2013; 50(6):1901-1909
  5. Ronald LP, Lewis MC, Daniel MF, Mark AG, Tom LT, Dennis BB, Allan HJ. A proposed hardness assurance test methodology for bipolar linear circuits and devices in a space ionizing radiation environment. IEEE Trans Nucl Sci. 1997;44(6) :1981-1988 https://doi.org/10.1109/23.658976
  6. Rashkeev SN, Fleetwood DM, Schrimpf RD, Pantelides ST. Defect generation by hydrogen at the $Si-SiO_2$ interface. Phys Rev Lett. 2001:87(16): 165506 https://doi.org/10.1103/PhysRevLett.87.165506
  7. Pershenkov VS, Chumakov KA, Nikforov AY, Chumakov AI, Ulimov VN, Romanenko AA. Interface trap model for the low-dose-rate effect in bipolar devices. RADECS 2007 European Conference, 2007 September 1-6.
  8. Rashkeev SN, Cirba CR, Fleetwood DM, Schrimpf RD, Witczak SC, Michez A, Pantelides ST. Physical model for enhaced interface-trap formation at low dose rate. IEEE Trans Nucl Sci. 2002;49(6):2650-2655 https://doi.org/10.1109/TNS.2002.805387
  9. Fleetwood DM, Kosier SL, Nowlin RN, Schrimpf RD, Reber RA, Delaus JM, Winokur PS, Wei A, Combs WE, Pease RL. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates. IEEE Trans Nucl Sci. 1994;41 (6):1871-1883 https://doi.org/10.1109/23.340519
  10. Leonidas T, Ronald DS, Daniel MF, Ronald LP, Sokrates TP. Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias. IEEE Trans Nucl Sci. 2005;52:2265-2271 https://doi.org/10.1109/TNS.2005.860670

Cited by

  1. 방사선 차폐를 위한 3D 프린팅용 텅스텐-고분자 복합체 설계 vol.14, pp.5, 2015, https://doi.org/10.7742/jksr.2020.14.5.643