DOI QR코드

DOI QR Code

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D. (Dynamics and Adaptive Structures, Structural Technologies Division, CSIR-National Aerospace Laboratories) ;
  • Ramkumar, R. (Dynamics and Adaptive Structures, Structural Technologies Division, CSIR-National Aerospace Laboratories) ;
  • Raja, S. (Dynamics and Adaptive Structures, Structural Technologies Division, CSIR-National Aerospace Laboratories) ;
  • Rao, P. Siva Subba (Dynamics and Adaptive Structures, Structural Technologies Division, CSIR-National Aerospace Laboratories)
  • Received : 2014.07.23
  • Accepted : 2014.12.08
  • Published : 2015.07.25

Abstract

A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

Keywords

References

  1. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman, D.J. (2011), "A review of morphing aircraft", J. Intel. Mater. Syst. Struct., 22(9), 823-877. https://doi.org/10.1177/1045389X11414084
  2. Barbarino, S., Saavedra Flores, E.L., Ajaj, R.M., Dayyani, I. and Friswell, M.I. (2014), "A review on shape memory alloys with applications to morphing aircraft", Smart Mater. Struct., 23(6), 063001.. https://doi.org/10.1088/0964-1726/23/6/063001
  3. Bilgen, O., Butt, L.M., Day, S.R., Sossi, C.A., Weaver, J.P., Wolek, A., Mason, W.H. and Inman, D.J. (2013), "A novel unmanned aircraft with solid-state control surfaces: analysis and flight demonstration", J. Intel. Mater. Syst. Struct., 24(2), 147-167. https://doi.org/10.1177/1045389X12459592
  4. Bilgen, O. and Friswell, M.I. (2014), "Piezoceramic composite actuators for a solid-state variable-camber wing", J. Intel. Mater. Syst. Struct., 25(7), 806-817. https://doi.org/10.1177/1045389X13500575
  5. Bilgen, O., Kochersberger, K., Diggs, E.C., Kurdila, A.J. and Inman, D.J. (2007), "Morphing wing micro-air-vehicles via macro-fiber-composite actuators", AIAA 2007-1785, 48thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April.
  6. Bilgen, O., Kochersberger, K.B., Inman, D.J. and Ohanian, O.J. (2010), "Lightweight High Voltage Electronic Circuits for Piezoelectric Composite Actuators", J. Intel. Mater. Syst. Struct., 21(14), 1417-1426. https://doi.org/10.1177/1045389X10381657
  7. Bisplinghoff, R.L., Ashley, H. and Halfman, R.L. (2013), Aeroelasticity, Courier Dover Publications
  8. Bradley, L. and Peter, I. (2012), "Finite Element Modeling of Macro Fiber Composite Piezoelectric Actuators on Micro Air Vehicles", AIAA2012-1903, 53rdAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April.
  9. Bradley, W.L. and Peter, I. (2013), "A Study of Substrate Materials for Use in Conjunction with Macro Fiber Composites", AIAA2013-1916, 54thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, USA, April.
  10. Cote, F., Masson, P., Mrad, N. and Cotoni, V. (2004), "Dynamic and static modelling of piezoelectric composite structures using a thermal analogy with MSC/NASTRAN", Compos. Struct., 65(3-4), 471-484. https://doi.org/10.1016/j.compstruct.2003.12.008
  11. Deraemaeker, A., Nasser, H., Benjeddou, A. and Preumont, A. (2009), "Mixing rules for the piezoelectric properties of macro fiber composites", J. Intel. Mater. Syst. Struct., 20(12), 1475-1482. https://doi.org/10.1177/1045389X09335615
  12. Gomez, J.C. and Garcia, E. (2011), "Morphing unmanned aerial vehicles", Smart Mater. Struct., 20(10), 103001.. https://doi.org/10.1088/0964-1726/20/10/103001
  13. Kuder, I.K., Arrieta, A.F., Raither, W.E. and Ermanni, P. (2013), "Variable stiffness material and structural concepts for morphing applications", Prog. Aerospace Sci., 63, 33-55. https://doi.org/10.1016/j.paerosci.2013.07.001
  14. LaCroix, B.W. and Ifju, P.G. (2012), "Utilization and performance enhancements of multiple piezoelectric actuators on micro air vehicles", AIAA 2012-0392, 50thAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, USA, January.
  15. MSC Nastran (2012), "Linear Static Analysis User's Guide", MSC Software Inc, USA.
  16. Ohanian, O.J., Hickling, C., Stiltner, B., Karni, E.D., Kochersberger, K.B., Probst, T., Gelhausen, P.A. and Blain, A.P. (2012), "Piezoelectric morphing versus servo-actuated MAV control surfaces", AIAA 2012-1512, 53rdAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April.
  17. Osgar, O., Brian, D., Seth, T., Kevin, K., Troy, P., Paul, G. and Jonathon, C. (2013), "Piezoelectric morphing versus servo-actuated MAV control surfaces, Part II: flight testing", AIAA 2013-0767, 51stAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, USA, January.
  18. Pankonien, A. and Inman, D.J. (2013), "Experimental testing of spanwise morphing trailing edge concept", Proc. SPIE 8688, 868815, April 10, 2013, Active and Passive Smart Structures and Integrated Systems 2013, San Diego, California, USA.
  19. Paradies, R. and Ciresa, P. (2009), "Active wing design with integrated flight control using piezoelectric macro fiber composites", Smart Mater. Struct., 18(3), 035010. https://doi.org/10.1088/0964-1726/18/3/035010
  20. Pelletier, A. and Mueller, T.J. (2000), "Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings", J. Aircraft., 37(5), 825-832. https://doi.org/10.2514/2.2676
  21. Probst, T.A., Kochersberger, K., Stiltner, B., Hickling, C.J., Ohanian Iii, O.J., Karni, E., Olien, C. and Blain, A.P. (2012), "Smart material actuators as a means of UAV flight control", AIAA 2012-0486, 50thAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, USA, January.
  22. Rodden, W.P. and Johnson, E.H. (1994), MSC/NASTRAN aeroelastic analysis: user's guide; Version 68, MacNeal-Schwendler Corporation.
  23. Roshan Antony, Suraj, C.S. and Sankara Narayanan, S. (2011), Design of Black Kite Micro Air Vehicle, PD PR 1121, CSIR-National Aerospace Laboratories, Bangalore.
  24. Sadraey, M.H. (2012), Aircraft Design: A Systems Engineering Approach, John Wiley & Sons.
  25. Sanders, B., Eastep, F.E. and Forster, E. (2003), "Aerodynamic and Aeroelastic Characteristics of Wings with Conformal Control Surfaces for Morphing Aircraft", J. Aircraft., 40(1), 94-99. https://doi.org/10.2514/2.3062
  26. Sofla, A.Y.N., Meguid, S.A., Tan, K.T. and Yeo, W.K. (2010), "Shape morphing of aircraft wing: Status and challenges", Mater. Des., 31(3), 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011
  27. Vale, J., Leite, A., Lau, F. and Suleman, A. (2011), "Aero-structural optimization and performance evaluation of a morphing wing with variable span and camber", J. Intel. Mater. Syst. Struct., 22(10), 1057-1073. https://doi.org/10.1177/1045389X11416031
  28. Weisshaar, T.A. (2013), "Morphing aircraft systems: historical perspectives and future challenges", J. Aircraft., 50(2), 337-353. https://doi.org/10.2514/1.C031456
  29. Wickramasinghe, V., Chen, Y., Martinez, M., Wong, F. and Kernaghan, R. (2011), "Design and verification of a smart wing for an extreme-agility micro-air-vehicle", Smart Mater. Struct., 20(12), 125007. https://doi.org/10.1088/0964-1726/20/12/125007
  30. ANSYS Fluent Theory Guide (2011), Release 14.0, ANSYS Inc, Southpointe, Canonsburg, PA, 15317, November.
  31. Macro Fiber Composite - MFC, Smart Material Corp., www.smart-material.com.

Cited by

  1. Modeling of macro fiber composite actuated laminate plates and aerofoils vol.31, pp.4, 2015, https://doi.org/10.1177/1045389x19888728