DOI QR코드

DOI QR Code

The development of murine recombinant single-chain variable domain fragment (ScFv) specific to acute non-lymphocytic leukemia (ANLL) cell line HL60

인간의 급성 비임파성 백혈암세포(HL60)의 표면항원에 결합하는 재조합 single-chain Fv (ScFv)의 개발

  • Kim, Cheol Hong (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Han, Seung Hee (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Kim, Hyeong Min (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Han, Jae Yong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lim, Myeong Woon (Joongkyeom: Antibody Therapy Inc.) ;
  • Kim, Jin-Kyoo (Department of Microbiology, College of Natural Sciences, Changwon National University)
  • 김철홍 (창원대학교 자연과학대학 미생물학과) ;
  • 한승희 (창원대학교 자연과학대학 미생물학과) ;
  • 김형민 (창원대학교 자연과학대학 미생물학과) ;
  • 한재용 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 임명운 ((주)중겸 생명공학연구소) ;
  • 김진규 (창원대학교 자연과학대학 미생물학과)
  • Received : 2015.04.21
  • Accepted : 2015.05.29
  • Published : 2015.06.30

Abstract

A monoclonal antibody AP64 IgM binds to human acute nonlymphocytic leukemia (ANLL) cell line HL60 and also cross-reacts with the homologous antigen in a rat ANLL cell. This antibody mediated by complement, has leukemia a suppression effect. In this study, we generated a recombinant single-chain variable domain fragment (ScFv) which were derived from $V_H$ and $V_L$ cDNA of AP64 IgM-secreting hybridoma by RT-PCR. The two variable regions were joined with a single 15 amino acid linker $(G_4S)_3$. This recombinant ScFv was expressed as a single polypeptide chain from Escherichia coli BMH 71-18. The recombinant ScFv was purified by applying the periplasmic extract to $Ni^+$-NTA-agarose affinity column and detected with westernblot. The purified recombinant ScFv recognized a surface antigen (about 30 kDa) of HL60 cell line which is the same antigen detected by parental AP64 IgM. But the affinity of ScFv for a surface antigen of HL60 was lower than that of the parental AP64 IgM, which needs to be further improved. Overall, the recombinant ScFv specific to HL60 might be a useful bioreagent for either diagnostic or therapeutic purposes.

단일클론항체 AP64 IgM은 인간의 급성 비임파성 골수암(ANLL) 세포주 HL60에 결합하며 쥐의 ANLL 세포에도 교차결합(cross-react)한다. 또한 complement에 의해 매개되어지면 골수암 억제효과를 나타낸다. 본 연구에서는 RT-PCR에 의해 AP64 IgM을 분비하는 하이브리도마의 $V_H$$V_L$ cDNA로부터 유래된 재조합 single-chain variable domain fragment (ScFv)를 제조하였다. $V_H$$V_L$은 15개 아미노산으로 구성된 linker $(G_4S)_3$으로 연결되었다. 재조합 ScFv는 Escherichia coli BMH 71-18에서 single polypeptide chain으로 발현되었다. Periplasmic extract를 $Ni^+$-NTA-agarose affinity column에 가하여 발현된 재조합 ScFv를 정제하였으며 westernblot으로 정제된 단백질을 탐지하였다. 정제된 재조합 ScFv는 AP64 IgM 모항체가 탐지하는 항원과 같은 HL60 세포의 표면항원(약 30 kDa)을 인지하였다. 그러나 HL60의 표면항원에 대한 ScFv의 결합력은 AP64 IgM 모항체보다 낮아서 추후 이에 대한 개선이 필요하다. 종합하여 볼 때 HL60 세포주에 특이적인 재조합 ScFv는 진단 또는 치료목적으로 유용한 생물학적 제재가 될 수 있을 것이다.

Keywords

References

  1. Batra, S.K., Jain, M., Wittel, U.A., Chauhan, S.C., and Colcher, D. 2002. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 13, 603-608. https://doi.org/10.1016/S0958-1669(02)00352-X
  2. Brinkmann, U., Reiter, Y., Jung, S.H., Lee, B., and Pastan, I. 1993. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538-7542. https://doi.org/10.1073/pnas.90.16.7538
  3. Chadd, H.E. and Chamow, S.M. 2001. Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188-194. https://doi.org/10.1016/S0958-1669(00)00198-1
  4. Chothia, C. and Lesk, A.M. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901-917. https://doi.org/10.1016/0022-2836(87)90412-8
  5. Cloutier, S.M., Couty, S., Terskikh, A., Marguerat, L., Crivelli, V., Pugnieres, M., Mani, J.C., Leisinger, H.J., Mach, J.P., and Deperthes, D. 2000. Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected ScFv fragments on streptavidin. Mol. Immunol. 37, 1067-1077. https://doi.org/10.1016/S0161-5890(01)00023-2
  6. De Kruif, J. and Logtenberg, T. 1996. Leucine zipper dimerized bivalent and bispecific ScFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630-7634. https://doi.org/10.1074/jbc.271.13.7630
  7. Dubel, S., Breitling, F., Kontermann, R., Schmidt, T., Skerra, A., and Little, M. 1995. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (ScFv). J. Immunol. Methods 178, 201-209. https://doi.org/10.1016/0022-1759(94)00257-W
  8. Duenas, M., Vazquez, J., Ayala, M., Soderlind, E., Ohlin, M., Perez, L., Borrebaeck, C., and Gavilondo, J. 1994. Intra-and extracellular expression of an ScFv antibody fragment in E. coli: Effect of bacterial strains and pathway engineering using groEL chaperonins. BioTechniques. 16, 476-477, 480-473.
  9. Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362-1367. https://doi.org/10.1021/bi00458a002
  10. Hayden, M.S., Gilliland, L.K., and Ledbetter, J.A. 1997. Antibody engineering. Curr. Opin. Immunol. 9, 201-212. https://doi.org/10.1016/S0952-7915(97)80136-7
  11. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R., et al. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin singlechain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879-5883. https://doi.org/10.1073/pnas.85.16.5879
  12. Huston, J.S., Mudgett-Hunter, M., Tai, M.S., McCartney, J., Warren, F., Haber, E., and Oppermann, H. 1991. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 203, 46-88. https://doi.org/10.1016/0076-6879(91)03005-2
  13. Inoue, H., Suganami, A., Ishida, I., Tamura, Y., and Maeda, Y. 2013. Affinity maturation of a CDR3-grafted VHH using in silico analysis and surface plasmon resonance. J. Biochem. 154, 325-332. https://doi.org/10.1093/jb/mvt058
  14. Ivanov, II, Schelonka, R.L., Zhuang, Y., Gartland, G.L., Zemlin, M., and Schroeder, H.W., Jr. 2005. Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors. J. Immunol. 174, 7773-7780. https://doi.org/10.4049/jimmunol.174.12.7773
  15. Johnson, R.J., Kaizer, H., Massey, A.G., and Shin, H.S. 1985. Role of endogenous complement in monoclonal igm antibody-dependent leukemia suppression in vivo: Participation of C3b. J. Immunol. 134, 3497-3503.
  16. Johnson, R. and Shin, H. 1983. Monoclonal antibody against a differentiation antigen on human leukemia cells: Cross-reactivity with rat leukemia and suppression of rat leukemia in vivo. J. Immunol. 130, 2930-2936.
  17. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S., and Foeller, C. 1991. Sequences of proteins of immunological interest. Nature Publishing Group.
  18. Kim, J.K., Tsen, M.F., Ghetie, V., and Ward, E.S. 1994a. Catabolism of the murine IgG1 molecule: Evidence that both CH2-CH3 domain interfaces are required for persistence of IgG1 in the circulation of mice. Scand. J. Immunol. 40, 457-465. https://doi.org/10.1111/j.1365-3083.1994.tb03488.x
  19. Kim, J.K., Tsen, M.F., Ghetie, V., and Ward, E.S. 1994b. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542-548. https://doi.org/10.1002/eji.1830240308
  20. Kuroda, D., Shirai, H., Kobori, M., and Nakamura, H. 2008. Structural classification of CDR-H3 revisited: A lesson in antibody modeling. Proteins 73, 608-620. https://doi.org/10.1002/prot.22087
  21. Luo, D., Mah, N., Krantz, M., Wilde, K., Wishart, D., Zhang, Y., Jacobs, F., and Martin, L. 1995. VL-linker-VH orientationdependent expression of single chain Fv-containing an engineered disulfide-stabilized bond in the framework regions. J. Biochem. 118, 825-831. https://doi.org/10.1093/oxfordjournals.jbchem.a124986
  22. Muller, K.M., Arndt, K.M., and Pluckthun, A. 1998. A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 432, 45-49. https://doi.org/10.1016/S0014-5793(98)00829-1
  23. Peter Packl, M., Schroeckh, V., Kni, U., and Rolf Wenderoth, D.R. 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. BioTechnology 11, 1271-1277.
  24. Reczko, M., Martin, A.C., Bohr, H., and Suhai, S. 1995. Prediction of hypervariable CDR-H3 loop structures in antibodies. Protein Eng. 8, 389-395. https://doi.org/10.1093/protein/8.4.389
  25. Reiter, Y., Brinkmann, U., Jung, S.H., Pastan, I., and Lee, B. 1995. Disulfide stabilization of antibody Fv: Computer predictions and experimental evaluation. Protein Eng. 8, 1323-1331. https://doi.org/10.1093/protein/8.12.1323
  26. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491. https://doi.org/10.1126/science.2448875
  27. Shan, D., Press, O.W., Tsu, T.T., Hayden, M.S., and Ledbetter, J.A. 1999. Characterization of ScFv-Ig constructs generated from the anti-Cd20 mab 1F5 using linker peptides of varying lengths. J. Immunol. 162, 6589-6595.
  28. Shirai, H., Kidera, A., and Nakamura, H. 1996. Structural classification of CDR-H3 in antibodies. FEBS Lett. 399, 1-8. https://doi.org/10.1016/S0014-5793(96)01252-5
  29. Shirai, H., Kidera, A., and Nakamura, H. 1999. H3-rules: Identification of CDR-H3 structures in antibodies. FEBS Lett. 455, 188-197. https://doi.org/10.1016/S0014-5793(99)00821-2
  30. Shirai, H., Nakajima, N., Higo, J., Kidera, A., and Nakamura, H. 1998. Conformational sampling of CDR-H3 in antibodies by multicanonical molecular dynamics simulation. J. Mol. Biol. 278, 481-496. https://doi.org/10.1006/jmbi.1998.1698
  31. Skerra, A. and Pluckthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038-1041. https://doi.org/10.1126/science.3285470
  32. Steidl, S., Ratsch, O., Brocks, B., Durr, M., and Thomassen-Wolf, E. 2008. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Mol. Immunol. 46, 135-144. https://doi.org/10.1016/j.molimm.2008.07.013
  33. Ulrich, R., Koenen, M., Otto, K., and Muller-Hill, B. 1981. pUR222, a vector for cloning and rapid chemical sequencing of DNA. Nucleic Acids Res. 9, 4087-4098. https://doi.org/10.1093/nar/9.16.4087
  34. Verma, R., Boleti, E., and George, A.J. 1998. Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165-181. https://doi.org/10.1016/S0022-1759(98)00077-5
  35. Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268. https://doi.org/10.1016/0378-1119(82)90015-4
  36. Wagner, J., Johnson, R., Santos, G., Kim, B., and Shin, H. 1989. Systemic monoclonal antibody therapy for eliminating minimal residual. Blood 73, 6-14.
  37. Ward, A.C. 1992. Rapid analysis of yeast transformants using colony-PCR. BioTechniques 13, 350-350.
  38. Whitlow, M., Bell, B.A., Feng, S.L., Filpula, D., Hardman, K.D., Hubert, S.L., Rollence, M.L., Wood, J.F., Schott, M.E., Milenic, D.E., et al. 1993. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6, 989-995. https://doi.org/10.1093/protein/6.8.989
  39. Whitlow, M., Filpula, D., Rollence, M.L., Feng, S.L., and Wood, J.F. 1994. Multivalent Fvs: Characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng. 7, 1017-1026. https://doi.org/10.1093/protein/7.8.1017
  40. Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455. https://doi.org/10.1146/annurev.iy.12.040194.002245
  41. Zimmermann, J., Voss, H., Schwager, C., Stegemann, J., and Ansorge, W. 1988. Automated sanger dideoxy sequencing reaction protocol. FEBS Lett. 233, 432-436. https://doi.org/10.1016/0014-5793(88)80477-0

Cited by

  1. Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선 vol.30, pp.11, 2015, https://doi.org/10.5352/jls.2020.30.11.1012