References
- Batra, S.K., Jain, M., Wittel, U.A., Chauhan, S.C., and Colcher, D. 2002. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 13, 603-608. https://doi.org/10.1016/S0958-1669(02)00352-X
- Brinkmann, U., Reiter, Y., Jung, S.H., Lee, B., and Pastan, I. 1993. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538-7542. https://doi.org/10.1073/pnas.90.16.7538
- Chadd, H.E. and Chamow, S.M. 2001. Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188-194. https://doi.org/10.1016/S0958-1669(00)00198-1
- Chothia, C. and Lesk, A.M. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901-917. https://doi.org/10.1016/0022-2836(87)90412-8
- Cloutier, S.M., Couty, S., Terskikh, A., Marguerat, L., Crivelli, V., Pugnieres, M., Mani, J.C., Leisinger, H.J., Mach, J.P., and Deperthes, D. 2000. Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected ScFv fragments on streptavidin. Mol. Immunol. 37, 1067-1077. https://doi.org/10.1016/S0161-5890(01)00023-2
- De Kruif, J. and Logtenberg, T. 1996. Leucine zipper dimerized bivalent and bispecific ScFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630-7634. https://doi.org/10.1074/jbc.271.13.7630
- Dubel, S., Breitling, F., Kontermann, R., Schmidt, T., Skerra, A., and Little, M. 1995. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (ScFv). J. Immunol. Methods 178, 201-209. https://doi.org/10.1016/0022-1759(94)00257-W
- Duenas, M., Vazquez, J., Ayala, M., Soderlind, E., Ohlin, M., Perez, L., Borrebaeck, C., and Gavilondo, J. 1994. Intra-and extracellular expression of an ScFv antibody fragment in E. coli: Effect of bacterial strains and pathway engineering using groEL chaperonins. BioTechniques. 16, 476-477, 480-473.
- Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362-1367. https://doi.org/10.1021/bi00458a002
- Hayden, M.S., Gilliland, L.K., and Ledbetter, J.A. 1997. Antibody engineering. Curr. Opin. Immunol. 9, 201-212. https://doi.org/10.1016/S0952-7915(97)80136-7
- Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R., et al. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin singlechain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879-5883. https://doi.org/10.1073/pnas.85.16.5879
- Huston, J.S., Mudgett-Hunter, M., Tai, M.S., McCartney, J., Warren, F., Haber, E., and Oppermann, H. 1991. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 203, 46-88. https://doi.org/10.1016/0076-6879(91)03005-2
- Inoue, H., Suganami, A., Ishida, I., Tamura, Y., and Maeda, Y. 2013. Affinity maturation of a CDR3-grafted VHH using in silico analysis and surface plasmon resonance. J. Biochem. 154, 325-332. https://doi.org/10.1093/jb/mvt058
- Ivanov, II, Schelonka, R.L., Zhuang, Y., Gartland, G.L., Zemlin, M., and Schroeder, H.W., Jr. 2005. Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors. J. Immunol. 174, 7773-7780. https://doi.org/10.4049/jimmunol.174.12.7773
- Johnson, R.J., Kaizer, H., Massey, A.G., and Shin, H.S. 1985. Role of endogenous complement in monoclonal igm antibody-dependent leukemia suppression in vivo: Participation of C3b. J. Immunol. 134, 3497-3503.
- Johnson, R. and Shin, H. 1983. Monoclonal antibody against a differentiation antigen on human leukemia cells: Cross-reactivity with rat leukemia and suppression of rat leukemia in vivo. J. Immunol. 130, 2930-2936.
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S., and Foeller, C. 1991. Sequences of proteins of immunological interest. Nature Publishing Group.
- Kim, J.K., Tsen, M.F., Ghetie, V., and Ward, E.S. 1994a. Catabolism of the murine IgG1 molecule: Evidence that both CH2-CH3 domain interfaces are required for persistence of IgG1 in the circulation of mice. Scand. J. Immunol. 40, 457-465. https://doi.org/10.1111/j.1365-3083.1994.tb03488.x
- Kim, J.K., Tsen, M.F., Ghetie, V., and Ward, E.S. 1994b. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542-548. https://doi.org/10.1002/eji.1830240308
- Kuroda, D., Shirai, H., Kobori, M., and Nakamura, H. 2008. Structural classification of CDR-H3 revisited: A lesson in antibody modeling. Proteins 73, 608-620. https://doi.org/10.1002/prot.22087
- Luo, D., Mah, N., Krantz, M., Wilde, K., Wishart, D., Zhang, Y., Jacobs, F., and Martin, L. 1995. VL-linker-VH orientationdependent expression of single chain Fv-containing an engineered disulfide-stabilized bond in the framework regions. J. Biochem. 118, 825-831. https://doi.org/10.1093/oxfordjournals.jbchem.a124986
- Muller, K.M., Arndt, K.M., and Pluckthun, A. 1998. A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 432, 45-49. https://doi.org/10.1016/S0014-5793(98)00829-1
- Peter Packl, M., Schroeckh, V., Kni, U., and Rolf Wenderoth, D.R. 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. BioTechnology 11, 1271-1277.
- Reczko, M., Martin, A.C., Bohr, H., and Suhai, S. 1995. Prediction of hypervariable CDR-H3 loop structures in antibodies. Protein Eng. 8, 389-395. https://doi.org/10.1093/protein/8.4.389
- Reiter, Y., Brinkmann, U., Jung, S.H., Pastan, I., and Lee, B. 1995. Disulfide stabilization of antibody Fv: Computer predictions and experimental evaluation. Protein Eng. 8, 1323-1331. https://doi.org/10.1093/protein/8.12.1323
- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491. https://doi.org/10.1126/science.2448875
- Shan, D., Press, O.W., Tsu, T.T., Hayden, M.S., and Ledbetter, J.A. 1999. Characterization of ScFv-Ig constructs generated from the anti-Cd20 mab 1F5 using linker peptides of varying lengths. J. Immunol. 162, 6589-6595.
- Shirai, H., Kidera, A., and Nakamura, H. 1996. Structural classification of CDR-H3 in antibodies. FEBS Lett. 399, 1-8. https://doi.org/10.1016/S0014-5793(96)01252-5
- Shirai, H., Kidera, A., and Nakamura, H. 1999. H3-rules: Identification of CDR-H3 structures in antibodies. FEBS Lett. 455, 188-197. https://doi.org/10.1016/S0014-5793(99)00821-2
- Shirai, H., Nakajima, N., Higo, J., Kidera, A., and Nakamura, H. 1998. Conformational sampling of CDR-H3 in antibodies by multicanonical molecular dynamics simulation. J. Mol. Biol. 278, 481-496. https://doi.org/10.1006/jmbi.1998.1698
- Skerra, A. and Pluckthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038-1041. https://doi.org/10.1126/science.3285470
- Steidl, S., Ratsch, O., Brocks, B., Durr, M., and Thomassen-Wolf, E. 2008. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Mol. Immunol. 46, 135-144. https://doi.org/10.1016/j.molimm.2008.07.013
- Ulrich, R., Koenen, M., Otto, K., and Muller-Hill, B. 1981. pUR222, a vector for cloning and rapid chemical sequencing of DNA. Nucleic Acids Res. 9, 4087-4098. https://doi.org/10.1093/nar/9.16.4087
- Verma, R., Boleti, E., and George, A.J. 1998. Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165-181. https://doi.org/10.1016/S0022-1759(98)00077-5
- Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268. https://doi.org/10.1016/0378-1119(82)90015-4
- Wagner, J., Johnson, R., Santos, G., Kim, B., and Shin, H. 1989. Systemic monoclonal antibody therapy for eliminating minimal residual. Blood 73, 6-14.
- Ward, A.C. 1992. Rapid analysis of yeast transformants using colony-PCR. BioTechniques 13, 350-350.
- Whitlow, M., Bell, B.A., Feng, S.L., Filpula, D., Hardman, K.D., Hubert, S.L., Rollence, M.L., Wood, J.F., Schott, M.E., Milenic, D.E., et al. 1993. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6, 989-995. https://doi.org/10.1093/protein/6.8.989
- Whitlow, M., Filpula, D., Rollence, M.L., Feng, S.L., and Wood, J.F. 1994. Multivalent Fvs: Characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng. 7, 1017-1026. https://doi.org/10.1093/protein/7.8.1017
- Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455. https://doi.org/10.1146/annurev.iy.12.040194.002245
- Zimmermann, J., Voss, H., Schwager, C., Stegemann, J., and Ansorge, W. 1988. Automated sanger dideoxy sequencing reaction protocol. FEBS Lett. 233, 432-436. https://doi.org/10.1016/0014-5793(88)80477-0
Cited by
- Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선 vol.30, pp.11, 2015, https://doi.org/10.5352/jls.2020.30.11.1012