DOI QR코드

DOI QR Code

Numerical analysis of crack propagation in cement PMMA: application of SED approach

  • Ali, Benouis (Mechanics and Physics of Materials Laboratory, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Abdelkader, Boulenouar (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes) ;
  • Noureddine, Benseddiq (Mechanics Laboratory of Lille, CNRS UMR 8107, Ecole Polytech'Lille, University of Lille1) ;
  • Boualem, Serier (Mechanics and Physics of Materials Laboratory, Djillali Liabes University of Sidi Bel-Abbes)
  • Received : 2015.03.01
  • Accepted : 2015.05.18
  • Published : 2015.07.10

Abstract

Finite element analysis (FEA) combined with the concepts of linear elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. In this paper, a numerical modeling of crack propagation in the cement mantle of the reconstructed acetabulum is presented. This work is based on the implementation of the displacement extrapolation method (DEM) and the strain energy density (SED) theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors (SIFs). In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the defect on the crack propagation path was highlighted.

Keywords

References

  1. Ali, B., Boualem, S. and Smail, B. (2015), "Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis", Adv. Biomech. Appl., 2(1), 1-10. https://doi.org/10.12989/aba.2015.2.1.001
  2. Alshoaibi, A.M. and Ariffin, A.K. (2006), "Finite element simulation of stress intensity factors in elastic-plastic crack growth". J. Zhejiang Univ. Sci. A., 7, 1336-1342. https://doi.org/10.1631/jzus.2006.A1336
  3. Alshoaibi, A.M., Hadi, M.S.A. and Ariffin, A.K. (2007), "An adaptive finite element procedure for crack propagation analysis", J. Zhejiang Univ. Sci. A., 2, 228-236.
  4. ANSYS Inc. (2009), Programmer's Manual for Mechnical APDL, Release 12.1.
  5. Ayatollahi, M.R. and Karo, S. (2012), "Mode I fracture initiation in limestone by strain energy density criterion", Theor. Appl. Fract. Mech., 57, 14-18. https://doi.org/10.1016/j.tafmec.2011.12.003
  6. Balasubramanian, V. and Guha, B. (2000), "Fatigue life prediction of welded cruciform joints using strain energy density factor approach", Theor. Appl. Fract. Mech., 34, 85-92. https://doi.org/10.1016/S0167-8442(00)00026-4
  7. Balasubramanian, V. and Guha, B. (2000), "Fatigue life prediction of welded cruciform joints using strain", Theor. Appl. Fract. Mech., 31, 85-92
  8. Barsoum, R.S. (1974), "On the use of isoparametric finite element in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-37.
  9. Benbarek, S., Bachir Bouiadjra, B., Achour, T., Belhouari, M. and Serier, B. (2007), "Finite element analysis of the behaviour of crack emanating from microvoid in cement of reconstructed acetabulum", Mater. Sci. Eng. A, 457, 385-391. https://doi.org/10.1016/j.msea.2006.12.087
  10. Benbarek, S., Bachir Bouiadjra, B., Mankour, A., Acour, T. and Serier, B., (2009), "Analysis of fracture behaviour of the cement mantle of reconstructed acetabulum", Comput. Mater. Sci., 44, 1291-1295. https://doi.org/10.1016/j.commatsci.2008.08.024
  11. Benbarek, S., Bouiadjra, B.A.B., El Mokhtar, B.M., Achour, T. and Serier, B. (2013), "Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum", Mater. Sci. Eng. C, 33, 543-549. https://doi.org/10.1016/j.msec.2012.09.029
  12. Berto, F. and Lazzarin, P. (2009), "A review of the volume-based strain energy density approach applied to V-notches and welded structures", Theor. Appl. Fract. Mech., 52, 183-194. https://doi.org/10.1016/j.tafmec.2009.10.001
  13. Berto, F., Lazzarin, P. and Marangon, C. (2012), "Brittle fracture of U-notched graphite plates under mixed mode loading", Mater. Des., 41, 421-432. https://doi.org/10.1016/j.matdes.2012.05.022
  14. Berto, F. and Lazzarin, P. (2014), "Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches", Mater. Sci. Eng. R, 75, 1-48. https://doi.org/10.1016/j.mser.2013.11.001
  15. Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192, 3887-3908. https://doi.org/10.1016/S0045-7825(03)00391-8
  16. Boulenouar, A., Benseddiq, N. and Mazari, M. (2013), "Strain energy density prediction of crack propagation for 2D linear elastic materials", Theor. Appl. Fract. Mech., 67-68, 29-37. https://doi.org/10.1016/j.tafmec.2013.11.001
  17. Boulenouar, A., Benseddiq, N. and Mazari, M. (2013), "Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis", Eng. Tech. Appl. Sci. Res., 3, 506-510.
  18. Boulenouar, A., Benseddiq, N., Mazari, M. and Benamara, N., (2014), "FE model for linear elastic mixed mode loading: estimation of SIFs and crack propagation", J. Theor. Appl. Mech., 52 (2), 373-383.
  19. Cervenka, J. (1994), "Discrete crack modeling in concrete structures", PhD Thesis of the University of Colorado.
  20. Chang, K.J. (1981), "Further studies of the maximum stress criterion on the angled crack problem". Eng. Fract. Mech., 14, 125. https://doi.org/10.1016/0013-7944(81)90022-9
  21. Chang, K.J. (1981), "On the maximum strain criterion - a new approach to the angled crack problem", Eng. Fract. Mech., 14, 107-124. https://doi.org/10.1016/0013-7944(81)90021-7
  22. Cilingir, A.C. (2010), "Finite element analysis of the contact mechanics of ceramic-on-ceramic hip resurfacing prostheses", J. Bio. Eng., 7(3), 244-253. https://doi.org/10.1016/S1672-6529(10)60247-8
  23. Colombi, P. (2002), "Fatigue analysis of cemented hip prosthesis: damage accumulation scenario and sensitivity analysis", Int. J. Fatigue, 24(7), 739-746. https://doi.org/10.1016/S0142-1123(01)00204-3
  24. Dalstra, M. and Huiskes, R. (1995), "Load transfer across the pelvic bone", J. Biomech., 28(6), 715-724. https://doi.org/10.1016/0021-9290(94)00125-N
  25. Deb, S. (2008), Orthopaedic Bone Cements, Woodhead Publishing in Materials, First Publishing.
  26. Dooblare, M. and Garcia, J.M., (2002), "Anisotropic bone remodelling model based on a continuum damage-repair theory", J. Biomech., 35(1), 1-17. https://doi.org/10.1016/S0021-9290(01)00178-6
  27. Dyrkacz, R.M.R., Brandt, J.M., Morrison, J., O'Brien, S.T., Ojo, O.A., Turgeon, T.R. and Wyss, U.P. (2015), "Finite element analysis of the head-neck taper interface of modular hip prostheses", Tribology International. (in Press)
  28. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85, 519-527. https://doi.org/10.1115/1.3656897
  29. Harigan, T.P. and Harris, W.H. (1991), "A finite element study of the effect of diametral interface gaps on the contact areas and pressures in uncemented cylindrical femoral total hip components", J. Biomech., 24, 87-91. https://doi.org/10.1016/0021-9290(91)90329-L
  30. Jayatilaka, A.D.S., Jenkins, I. and Prasad, S.V. (1977), "Determination of crack growth in a mixed mode loading system, Analysis and Mechanics", ICF4, Waterloo, Canada.
  31. Jeffers, J.R., Browne, M., Lennon, A.B., Prendergast, P.J. and Taylor, M. (2007), "Cement mantle fatigue failure in total hip replacement: experimental and computational testing", J. Biomech., 40, 1525-1533. https://doi.org/10.1016/j.jbiomech.2006.07.029
  32. Kim, B.S., Moon, B.Y., Mann, K.A., Kim, H.S. and Boo, K.S. (2008), "Simulated crack propagation in cemented total hip replacements", Mater. Sci. Eng. A, 483-484, 306-308. https://doi.org/10.1016/j.msea.2007.01.171
  33. Kipp, M.E. and Sih, G.C. (1975), "The strain energy density failure criterion applied to notched elastic solids", Int. J. Solid. Struct., 11, 153-173. https://doi.org/10.1016/0020-7683(75)90050-5
  34. Labeas, G. and Kermanidis, Th. (2006), "Stress multiaxiality factor for crack growth prediction using the strain energy density theory", Theor. Appl. Fract. Mech., 45, 100-107. https://doi.org/10.1016/j.tafmec.2006.02.008
  35. Lazzarin, P., Berto, F. and Ayatollahin, M.R. (2013), "Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading", Fatigue Fract. Eng. Mater. Struct., 36, 942-955. https://doi.org/10.1111/ffe.12057
  36. Lennon, A.B., McCormack, B.A.O. and Prendergast, P.J. (2003), "The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses", Med. Eng. Phys., 25, 833-841. https://doi.org/10.1016/S1350-4533(03)00120-6
  37. Lennon, A.B. and Pendegast, P.J. (2001), "Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants", J. Biomech. Eng., 123(6), 623- 628. https://doi.org/10.1115/1.1412452
  38. Leroy, R. (1991), "Etude et comportement non-uniforme de linterface entre implant Femorale et liant polymerique dans le cas de prothese totale de hanche", These de doctorat, Universite de Tours.
  39. Maiti, S.K. and Smith, R.A. (1983), "Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field", Int. J. Fracture, 23, 281-295. https://doi.org/10.1007/BF00020696
  40. Murphy, B.P. and Prendergast, P.J. (2001), "The relationship between stress, porosity and nonlinear damage accumulation in acrylic bone cement", J. Biomed. Mater. Res., 59, 646-654.
  41. Nobile, L., Carloni, C. and Nobile, M. (2004), "Strain energy density prediction of crack initiation and direction in cracked T-beams and pipes", Theor. Appl. Fract. Mech., 41, 137-145. https://doi.org/10.1016/j.tafmec.2003.11.011
  42. Nocollela, P.N., Thacker, B.H., Katoozian, H. and Davy, D.T. (2001), Bioengineerion Conference, BED 50, 427-428.
  43. Kayabasi, O. and Ekici, B. (2008), "Probabilistic design of a newly designed cemented hip prosthesis using finite element method", Mater. Des., 29(5), 963-971. https://doi.org/10.1016/j.matdes.2007.03.024
  44. Pan, B.F., Gao, Y.Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4), 829-841. https://doi.org/10.12989/sem.2014.52.4.829
  45. Perez, M.A., Garcia-Aznar, J.M., Doblare, M., Seral, B. and Seral, F., (2006), "A comparative FEA of the deboning process in different concepts of cemented hip implants", Medi. Eng. Phys., 28, 525-533. https://doi.org/10.1016/j.medengphy.2005.09.007
  46. Ridha, H. (2014), "3D finite element simulation of human proximal femoral fracture under quasi-static load", Adv. Biomech. Appl., 1(1), 1-14. https://doi.org/10.12989/aba.2013.1.1.001
  47. Sih, G.C. (1973), "Some basic problems in fracture mechanics and new concepts", Eng. Fract. Mech., 5, 365-377. https://doi.org/10.1016/0013-7944(73)90027-1
  48. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed-mode crack problems", Int. J. Fract., 10, 305-321. https://doi.org/10.1007/BF00035493
  49. Sih, G.C. and Macdonald, B. (1974), "Fracture mechanics applied to engineering problems-Strain energy density fracture criterion", Eng. Fract. Mech., 6, 361-386. https://doi.org/10.1016/0013-7944(74)90033-2
  50. Sim, E., Freimuller, W. and Reiter, T.J. (1995), "Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implant", Injury, 26, 445-449. https://doi.org/10.1016/0020-1383(95)00079-O
  51. Souiyah, M., Alshoaibi, A.M., Muchtar, A. and Ariffin, A.K. (2008), "Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy", J. Zhejiang Univ. Sci. A., 9, 32-37. https://doi.org/10.1631/jzus.A072176
  52. Spyropoulos, C.P. (2003), "Crack initiation direction from interface of bonded dissimilar media", Theor. Appl. Fract. Mech., 39, 99-105. https://doi.org/10.1016/S0167-8442(02)00141-6
  53. Theocaris, P.S. (1984), "A higher-order approximation for the T-criterion of fracture in biaxial fields", Eng. Fract. Mech., 19, 975. https://doi.org/10.1016/0013-7944(84)90144-9
  54. Tong, J. and Wong, K.Y. (2005), Mixed Mode Fracture in Reconstructed Acetabulum, Department of Mechanical and design Engineering, University of Portsmouth, Anglesea Road, Portsmouth, PO1 3 DJ, UK.
  55. Weinas, H., Huiskes, R., Van ribergen, B., Summer, D.R., Turner, T.M. and Galante, J.O. (1993), "Adaptive bone-remodeling around bonded noncemented THA: a comparison between animal experiments and computer simulatio", J. Orthopaed. Res., 11, 500-513. https://doi.org/10.1002/jor.1100110405
  56. Wu, H.C. (1974), "Dual failure criterion for plane concrete", J. Eng. Mech. Div., ASCE, 100, 1167-1181.
  57. Zuo, J.Z. Kermanidis, A.T. and Pantelakis, S.G. (2002), "Strain energy density prediction of fatigue crack growth from hole of aging aircraft structures", Theor. Appl. Fract. Mech., 38, 37-51. https://doi.org/10.1016/S0167-8442(02)00079-4

Cited by

  1. Numerical Modelling of Crack Propagation in Cement PMMA: Comparison of Different Criteria vol.19, pp.4, 2016, https://doi.org/10.1590/1980-5373-MR-2015-0784
  2. Numerical simulation of the femur fracture under static loading vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.405
  3. On the mixed-mode crack propagation in FGMs plates: comparison of different criteria vol.61, pp.3, 2015, https://doi.org/10.12989/sem.2017.61.3.371
  4. A Numerical Modelling of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials vol.22, pp.3, 2015, https://doi.org/10.1590/1980-5373-mr-2018-0701
  5. Computation of SIFs for cracked FGMs under mechanical and thermal loadings vol.40, pp.1, 2015, https://doi.org/10.2478/amtm-2020-0003
  6. Generalized displacement correlation method for mechanical and thermal fracture of FGM vol.9, pp.1, 2015, https://doi.org/10.1142/s2047684120500049
  7. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2015, https://doi.org/10.12989/sem.2021.79.2.237