DOI QR코드

DOI QR Code

Evaluation of Particle Counting by Smartphone-based Fluorescence Smartscope and Particle Positioning in Spinning Helical Channel

스마트폰 기반 형광 smartscope의 입자계수 및 회전하는 나선형 채널의 입자정렬 성능 평가

  • 박은정 (한국기술교육대학교 기계공학과) ;
  • 김수빈 (국민대학교 기계공학과) ;
  • 조명옥 (국민대학교 기계공학과) ;
  • 김경훈 (국민대학교 기계공학과) ;
  • 모히우띤 (국민대학교 의생명융합학과) ;
  • 김선욱 (국민대학교 의생명융합학과) ;
  • 이정훈 (한국기술교육대학교 기계공학부) ;
  • 김중경 (국민대학교 기계공학과)
  • Received : 2015.06.02
  • Accepted : 2015.06.27
  • Published : 2015.06.30

Abstract

With the aim of developing a smartphone-based point-of-care device that is small, inexpensive, and easy to handle by non-expert, we designed a fluorescence smartscope for counting particles and a DC motor-controlled particle positioning system. Our smartscope can count the number of fluorescent particles and fluorescently-stained white blood cells through a phone camera with an adaptor containing a LED, a ball lens and optical filters and an application running on a smartphone. The motor was controlled wirelessly via Bluetooth with an Android smartphone. We found that axial spinning of a helical microfluidic channel allows arrangement of particles having size similar to the white blood cells. The motor-controlled particle positioning system can minimize time-consuming manual processes and automate sample preparation process and thus, if integrated with the smartscope, it can be used for a point-of-care testing device based on a smartphone.

스마트폰의 영상정보처리에 기반한 현장 진단기기 개발을 목표로 입자계수용 형광 smartscope와 DC 모터로 제어되는 입자정렬 시스템을 제작하였다. 크기가 작고 저렴한 비용으로 비전문가도 쉽게 다룰 수 있는 smartscope는 LED, 볼렌즈, 형광필터가 설치된 어댑터가 스마트폰 카메라 앞에 장착되어 전용 애플리케이션으로 형광입자와 형광염색된 백혈구를 계수할 수 있었다. 모터는 안드로이드 스마트폰의 블루투스 무선통신 기능을 통해 제어되었다. 나선형 미세유동채널이 축을 중심으로 회전하는 동안 백혈구와 크기가 유사한 입자가 정렬되는 현상을 관찰하였다. 모터로 회전 방향과 속도가 조절되는 입자 정렬 시스템은 많은 시간이 소요되는 수작업을 최소화하고 시료 전처리 과정을 자동화할 수 있으므로, smartscope와 통합될 경우 스마트폰을 이용한 현장진단기기에 활용될 수 있을 것이다.

Keywords

References

  1. L. Gervais, N. de Rooij and E. Delamarche, "Microfluidic chips for point-of-care immunodiagnostics," Advanced Materials, Vol. 23, Iss. 24, pp. H151-H176, 2011. https://doi.org/10.1002/adma.201100464
  2. W. G. Lee, Y. G. Kim, B. G. Chung, U. Demirci and A. Khademhosseini, "Nano/microfluidics for diagnosis of infectious diseases in developing countries," Advanced Drug Delivery Reviews, Vol. 62, pp. 449-457, 2010. https://doi.org/10.1016/j.addr.2009.11.016
  3. Y. S. Jung, "Implementation Plan of Integrated Medical Information System for Ubiquitous Healthcare Service," Journal of the Korea Industrial Information Systems Research, Vol. 15, No. 2, pp.115-126, 2010.
  4. S. Park, B. Moon, B. Lim, B. Hwang and S. Choi, "Development of Wireless Healthcare System for Emergency Treatment," Journal of the Korea Industrial Information Systems Research, Vol. 14, No. 5, pp. 125-130, 2009.
  5. D. M. Morens, G. K. Folkers and A. S. Fauci, "The challenge of emerging and re-emerging infectious diseases," Nature, Vol. 430, Iss. 6996, pp. 242-249, 2004. https://doi.org/10.1038/nature02759
  6. P. Yager, G. J. Domingo and J. Gerdes, "Point-of-care diagnostics for global health," Annual Review of Biomedical Engineering Vol. 10, pp. 107-144, 2008. https://doi.org/10.1146/annurev.bioeng.10.061807.160524
  7. V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan and D. E. Williams, "Point of care diagnostics: status and future," Analytical Chemistry, Vol. 84. Iss. 2, pp. 487-515, 2012. https://doi.org/10.1021/ac2030199
  8. V. Oncescu, M. Mancuso and D. Erickson, "Cholesterol testing on a smartphone," Lab on a Chip, Vol. 14, No. 4, pp. 759-763, 2014. https://doi.org/10.1039/C3LC51194D
  9. I. Navruz, A. F. Coskun, J. Wong, S. Mohammad, D. Tseng, R. Nagi, S. Phillips and A. Ozcan, "Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array," Lab on a Chip, Vol. 13, Iss. 20, pp. 4015-4023, 2013. https://doi.org/10.1039/c3lc50589h
  10. R. D. Stedtfeld, D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld, M. Kronlein, S. Price, F. Ahmad, E. Gulari, J. M. Tiedje and S. A. Hashsham, "Gene-Z: a device for point of care genetic testing using a smartphone," Lab on a Chip, Vol. 12, Iss. 8, pp. 1454-1462, 2012. https://doi.org/10.1039/c2lc21226a
  11. D. C. Duffy, J. C. McDonald, O. J. Schueller and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Analytical Chemistry, Vol. 70, Iss. 23, pp. 4974-4984, 1998. https://doi.org/10.1021/ac980656z
  12. C. D. Chin, V. Linder and S. K. Sia, "Commercialization of microfluidic point-of-care diagnostic devices," Lab on a Chip, Vol. 12, Iss. 12, pp. 2118-2134, 2012. https://doi.org/10.1039/c2lc21204h
  13. C. Park, M.-O. Cho, D. Lee and J. K. Kim, "Analysis of blood cell images using smartphone-based mobile smartscope," Journal of the Korean Society of Visualization, Vol. 10, No. 2, pp. 25-31, 2012. https://doi.org/10.5407/JKSV.2012.10.2.025
  14. S. Kim and J. K. Kim, "Quantitation of antigen-antibody reaction condition for development of fluorescence image-based CD4 rapid test," Journal of the Korean Society of Visualization, Vol. 13, No. 1, pp. 35-42, 2015. https://doi.org/10.5407/jksv.2015.13.1.035
  15. B. Prasad and J. K. Kim, "CFD analysis of geometric parameters that affect Dean flow in a helical microchannel," Journal of the Korean Society of Marine Engineering, Vol. 38, No. 10, pp. 1269-1274, 2014. https://doi.org/10.5916/jkosme.2014.38.10.1269