DOI QR코드

DOI QR Code

A Mechanism of AMOC Decadal Variability in the HadGEM2-AO

HadGEM2-AO 모델이 모의한 AMOC 수십 년 변동 메커니즘

  • Wie, Jieun (Division of Science Education/Institute of Fusion Science, Chonbuk National University) ;
  • Kim, Ki-Young (4D Solution Co., LTD.) ;
  • Lee, Johan (National Institute of Meteorological Research) ;
  • Boo, Kyung-on (National Institute of Meteorological Research) ;
  • Cho, Chunho (National Institute of Meteorological Research) ;
  • Kim, Chulhee (Division of Science Education/Institute of Fusion Science, Chonbuk National University) ;
  • Moon, Byung-kwon (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
  • 위지은 (전북대학교 과학교육학부/융합과학연구소) ;
  • 김기영 ((주)포디솔루션) ;
  • 이조한 (국립기상과학원) ;
  • 부경온 (국립기상과학원) ;
  • 조천호 (국립기상과학원) ;
  • 김철희 (전북대학교 과학교육학부/융합과학연구소) ;
  • 문병권 (전북대학교 과학교육학부/융합과학연구소)
  • Received : 2015.06.08
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

The Atlantic meridional overturning circulation (AMOC), driven by high density water sinking around Greenland serves as a global climate regulator, because it transports heat and materials in the climate system. We analyzed the mechanism of AMOC on a decadal time scale simulated with the HadGEM2-AO model. The lead-lag regression analysis with AMOC index shows that the decadal variability of the thermohaline circulation in the Atlantic Ocean can be considered as a self-sustained variability. This means that the long-term change of AMOC is related to the instability which is originated from the phase difference between the meridional temperature gradient and the ocean circulation. When the overturning circulation becomes stronger, the heat moves northward and decreases the horizontal temperature-dominated density gradients. Subsequently, this leads to weakening of the circulation, which in turn generates the anomalous cooling at high latitudes and, thereby strengthening the AMOC. In this mechanism, the density anomalies at high latitudes are controlled by the thermal advection from low latitudes, meaning that the variation of the AMOC is thermally driven and not salinity driven.

북대서양 자오면 순환(AMOC)은 그린란드 부근에서 고밀도 해수의 침강으로 유도되는데, 이것은 열과 물질을 수송시키기 때문에 기후 시스템의 중요한 요소이다. 이 연구는 전 지구 기후모델 중 하나인 HadGEM2-AO 모델에서 모의된 AMOC의 특징과 장기변동 메커니즘을 분석하였다. AMOC 지수를 이용한 지연 상관 분석을 통해 AMOC의 수십 년 변화는 해양 자체유지 변동으로 간주할 수 있었다. 즉 AMOC의 장기 변화는 남북 수온 경도와 해양 순환의 위상차로 인해 발생하는 불안정성에 의한 것으로 분석되었다. AMOC가 강해지면서 열의 북향 수송에 의해 남북 수온 경도가 작아지고, 따라서 해수의 순환과 열 수송이 줄어드는데, 이와 함께 고위도에서는 냉각이 유도되어 결과적으로 다시 AMOC가 강해지게 된다. 이 메커니즘은 저위도로부터 이류되는 열의 양에 따라 고위도 지역의 밀도 변화가 결정되기 때문에 AMOC의 변동을 염분 유도가 아닌 열적 유도 과정으로 이해할 수 있다.

Keywords

References

  1. Allison, L., Hawkins, E., and Woollings, T., 2015, An event-based approach to understanding decadal fluctuations in the Atlantic meridional overturning circulation. Climate Dynamics, 44, 163-190, doi: 10.1007/s00382-014-2271-9.
  2. Ba, J., Keenlyside, N.S., Park, W., Latif, M., Hawkins, E., and Ding, H., 2013, A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Climate Dynamics, 41, 2133-2144, doi: 10.1007/s00382-012-1633-4.
  3. Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Cho, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., and Byun, Y.-H., 2013, Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Science, 49, 603-618, doi: 10.1007/s131043-013-0053-7.
  4. Carlson, A.E., 2010, What caused the Younger Dryas cold event? Geology, 38, 383-384, doi: 10.1130/focus042010.1.
  5. Cheng, W., Bleck, R., and Rooth, C., 2004, Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Climate Dynamics, 22, 573-590, doi: 10.1007/s00382-004-0400-6.
  6. Cheng, W., Chiang, J.C.H., and Zhang, D.X., 2013, Atlantic meridional overturning circulation (AMOC) in CMIP5 Models: RCP and historical simulations. Journal of Climate, 26, 7187-7197, doi: 10.1175/JCLI-D-12-00496.1.
  7. Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A.J., 2002, The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863-869, doi: 10.1038/415863a.
  8. Cunningham, S.A., Kanzow, T., Rayner, D., Baringer, M.O., Johns, W.E., Marotzke, J., Longworth, H.R., Grant, E.M., Hirschi, J.J., Beal, L.M., Meinen, C.S., and Bryden, H.L., 2007, Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science, 317, 935-938. https://doi.org/10.1126/science.1141304
  9. Dahl, K.A., Broccoli, A.J., and Stouffer, R., 2005, Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dynamics, 24, 325-346, doi: 10.1007/s00382-004-0499-5.
  10. Delworth, T.L., Manabe, S., and Stouffer, R.J., 1993, Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. Journal of Climate, 6, 1993-2011. https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2
  11. Delworth, T.L., Manabe, S., and Stouffer, R.J. 1997, Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophysical Research Letters, 24, 257-260. https://doi.org/10.1029/96GL03927
  12. Delworth, T.L. and Greatbatch, R.J., 2000, Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate, 13, 1481-1495. https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2
  13. Delworth, T.L. and Mann, M.E., 2000, Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16, 661-676. https://doi.org/10.1007/s003820000075
  14. Delworth, T.L., Zhang, R., and Mann, M.E., 2007, Decadal to Centennial Variability of the Atlantic from Observations and Models. Schmittner, A., Chiang, J.C.H., and Hemming, S.R. (eds.), Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning, American Geophysical Union, Washington, D.C., USA, doi: 10.1029/173GM10, 131-148.
  15. Dong, B. and Sutton, R.T., 2005, Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. Journal of Climate, 18, 1117-1135. https://doi.org/10.1175/JCLI3328.1
  16. Duplessy, J., Labeyrie, L., Arnold, M., Paterne, M., Duprat, J., and Weering, T.V., 1992, North Atlantic sea surface salinity and abrupt climate changes. Nature, 358, 485-488. https://doi.org/10.1038/358485a0
  17. Ganachaud, A. and Wunsch, C., 2000, Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453-457. https://doi.org/10.1038/35044048
  18. Greatbatch, R.J. and Zhang, S., 1995, An interdecadal oscillation in an ocean basin forced by constant heat flux. Journal of Climate, 8, 81-91. https://doi.org/10.1175/1520-0442(1995)008<0081:AIOIAI>2.0.CO;2
  19. Griffies, S.M. and Bryan, K., 1997, Predictability of North Atlantic multidecadal climate variability. Science, 275, 181-184. https://doi.org/10.1126/science.275.5297.181
  20. Haywood, J.M., Stouffer, R.J., Wetherald, R.T., Manabe, S., and Ramaswamy, V., 1997, Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophysical Research Letters, 24, 1335-1338. https://doi.org/10.1029/97GL01163
  21. Held, I.M., 2013, The cause of the pause. Nature, 501, 318-319. https://doi.org/10.1038/501318a
  22. IPCC, 1996, Climate Change 1995. Houghton, JT, Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (eds.). The IPCC second scientific assessment. Cambridge University Press, Cambridge, UK, 572 p.
  23. IPCC, 2013, Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1552 p.
  24. Jackson, L.C., 2013, Shutdown and recovery of the AMOC in a coupled global climate model: the role of advective feedback. Geophysical Research Letters, 40, 1182-1188, doi: 10.1002/grl.50289.
  25. Johns, W.E., Baringer, M.O., Beal, L.M., Cunningham, S.A., Kanzow, T., Bryden, H.L., Hirschi, J.J.M., Marotzke, J., Meinen, C.S., Shaw, B., and Curry, R., 2011, Continuous, array-based estimates of Atlantic Ocean heat transport at $26.5^{\circ}N$. Journal of Climate, 24, 2429-2449, doi: 10.1175/2010JCLI3997.1.
  26. Kerr, R., 2000, A North Atlantic climate pacemaker for the centuries. Science, 288, 1984-1985, doi:10.1126/science.288.5473.
  27. Knight, J., Allan, R., Folland, C., Vellinga, M., and Mann, M., 2005, A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32, 2-5, doi:10.1029/2005GL024233.
  28. Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf. S., 2007, On the driving processes of the Atlantic meridional overturning circulation, Reviews of Geophysics. 45, RG2001, doi: 10.1029/2004RG000166.
  29. Kwon, Y.O. and Frankignoul, C., 2014, Mechanisms of multidecadal Atlantic meridional overturning circulation variability diagnosed in depth versus density space. Journal of Climate, 27, 9359-9376. https://doi.org/10.1175/JCLI-D-14-00228.1
  30. Lavin, A., Bryden, H.L., and Parilla, G., 1998, Meridional transport and heat flux variations in the subtropical North Atlantic. The Global Atmosphere and Ocean System, 6, 269-293.
  31. Macdonald, A.M. and Wunsch, C., 1996, An estimate of global ocean circulation and heat fluxes. Nature, 382, 436-439. https://doi.org/10.1038/382436a0
  32. Mahajan, S., Zhang, R., and Delworth, T.L., 2011, Impact of the Atlantic meridional overturning circulation (AMOC) on Artic surface air temperature and sea ice variability. Journal of Climate, 24, 6573-6581, doi: 10.1175/2011JCLI4002.1.
  33. Manabe, S. and Stouffer, R.J., 1994, Multiple-century response of a coupled ocean-atmosphere model to an increase of carbon dioxide. Journal of Climate, 7, 5-23. https://doi.org/10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2
  34. Marshall, J. and Speer, K., 2012, Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5, 171-180, doi: 10.1038/ngeo1391.
  35. Matsumoto, K. and Yokoyama, Y., 2013, Atmospheric ${\Delta}^{14}C$ reduction in simulations of Atlantic overturning circulation shutdown. Global Biogeochemical Cycles, 27, 296-304, doi:10.1002/gbc.20035.
  36. Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Alley, R.B., Bloomfield, P., and Taylor, K. 1993, The atmosphere during the Younger Dryas. Science, 261, 195-197. https://doi.org/10.1126/science.261.5118.195
  37. McCarthy, G., Frajka-Williams, E., Johns, W.E., Baringer, M.O., Meinen, C.S., Bryden, H.L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S.A., 2012, Observed interannual variability of the Atlantic meridional overturning circulation at $26.5^{\circ}N$. Geophysical Research Letters, 39, 1-15, doi :10.1029/2012GL052933.
  38. McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., and Brown-Leger, S., 2004, Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834-837. https://doi.org/10.1038/nature02494
  39. Mignot, J., Ganopolski, A., and Levermann, A., 2007, Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. Journal of Climate, 20, 4884-4898, doi: 10.1175/JCLI4280.1.
  40. Mikolajewicz, U. and Maier-Reimer, E., 1990, Internal secular variability in an ocean general circulation model. Climate Dynamics, 4, 145-156. https://doi.org/10.1007/BF00209518
  41. Park, Y.-G., 2005, Climate change and the thermohaline circulation of the oceans. Journal of Atmosphere, KMS, 15, 69-74. (in Korean)
  42. Rahmstorf, S., 2002, Ocean circulation and climate during the past 120,000 years. Nature, 419, 207-214. https://doi.org/10.1038/nature01090
  43. Rahmstorf, S., 2006, Thermohaline ocean circulation. Elias, S.A. (eds). Encyclopedia of Quaternary Sciences, Elsevier, Amsterdam.
  44. Rahmstorf, S., Box, J., Feulner, G., Mann, M., Robinson, A., Rutherford, S., and Schaffernicht, E., 2015, Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475-480. https://doi.org/10.1038/nclimate2554
  45. Rayner, D., Hirschi, J.J.-M., Kanzow, T., Johns, W.E., Wright, P.G., Frajka-Williams, E,, Bryden, H.L., Meinen, C.S., Baringer, M.O., Marotzke, J., Beal, L.M., and Cunningham, S.A. 2011, Monitoring the Atlantic meridional overturning circulation. Deep-Sea Research, 58, 1744-1753. https://doi.org/10.1016/j.dsr2.2010.10.056
  46. Schlesinger, M.E. and Ramankutty, N., 1994, An oscillation in the global climate system of period 65-70 years. Nature, 367, 723-726, doi: 10.1038/367723a0.
  47. Stocker, T.F., 1998, Climate change-The seesaw effect. Science, 282, 61-62, doi: 10.1126/science.282.5386.61.
  48. Swingedouw, D., Braconnot, P., and Marti, O., 2006, Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophysical Research Letters, 33, L07711, doi:10.1029/2006GL025765.
  49. Te Raa, L.A. and Dijkstra, H.A., 2002, Instability of the thermohaline ocean circulation on interdecadal timescales. Journal of Physical Oceanography, 32, 138-160, doi: 10.1175/1520-0485(2002)032<0138:IOTTOC> 2.0.CO;2.
  50. Thornalley, D.J.R., Barker, S., Broecker, W.S., Elderfield, H., and McCave, I.N., 2011, The Deglacial Evolution of North Atlantic Deep Convection. Science, 331, 202-205, doi: 10.1126/science.1196812.
  51. Timmermann, A., Latif, M., Voss, R., and Grotzner, A., 1998, Northern Hemispheric intercdecadal variability: a coupled air-sea mode. Journal of Climate, 11, 1906-1931, doi: 10.1175/1520-0442-11.8.1906.
  52. Trenberth, K.E. and Caron, J.M., 2001, Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 3433-3443. https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
  53. Vellinga, M. and Wood, R.A., 2002, Global climate impacts of a collapse of the Atlantic thermohaline circulation. Climate Change, 54, 251-267. doi: 10.1023/A:1016168827653.
  54. Weaver, A.J., Sarachik, E.S., and Marotze, J., 1991, Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836-838, doi: 10.1038/353836a0.
  55. Weaver, A.J. and Valcke, S., 1998, On the variavility of the thermohaline circulation in the GFDL coupled model. Journal of Climate, 11, 759-767. https://doi.org/10.1175/1520-0442(1998)011<0759:OTVOTT>2.0.CO;2
  56. Wie, J., Moon, B.-K., Kim, K.-Y., and Lee, J., 2014, The global warming hiatus simulated in HadGEM2-AO Based on RCP8.5. Journal of Korean Earth Science Society, 35, 249-258, doi: 10.5467/JKESS.2014.35.4.249. (in Korean)
  57. Wood, R.A., Keen, A.B., Mitchell, J.F.B., and Gregory, J.M., 1999, Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399, 572-575, doi: 10.1038/21170.
  58. Wouters, B., Drijfhout, S., and Hazeleger, W., 2012, Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH. Climate Dynamics, 39, 2695-2712. https://doi.org/10.1007/s00382-012-1366-4
  59. Zhang, R. and Delworth, T.L., 2005, Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853-1860. https://doi.org/10.1175/JCLI3460.1
  60. Zhu, X.H. and Jungclaus, J., 2008, Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dynamics, 31, 731-741. https://doi.org/10.1007/s00382-008-0383-9