DOI QR코드

DOI QR Code

Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite

CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석

  • Received : 2015.04.09
  • Accepted : 2015.06.23
  • Published : 2015.07.01

Abstract

This paper discusses the attitude determination of the CNUSAIL-1 cube-satellite. The primary mission of the CNUSAIL-1 is sail deployment and operation in low Earth orbit, and the secondary mission is to look into influence of the sail deployment on satellite attitude and orbit. The attitude determination strategy is proposed depending on three mission phases, and its performance and applicability are verified through numerical simulations. This study considers the following sensors: Sun sensors and a three-axis magnetometer as attitude reference sensors, and a three-axis MEMS gyroscope as an inertial attitude sensor. Because sensors used for cube satellites have relatively low performances and worse noise characteristics, an Extended Kalman filter (EKF) is applied to attitude determination. Additionally, it has the merits to deal with the Gaussian noises and to predict the attitude even with no measurements from reference attitude sensors, especially in the eclipse of the cube satellite. The performance of the EKF is compared to a deterministic attitude determination technique, QUEST(QUaternion ESTimation).

CNUSAIL-1은 태양돛을 탑재한 3U 크기의 큐브위성이다. 저궤도에서 태양돛을 전개하고, 이에 따른 자세와 궤도에 대한 영향을 확인하는 임무를 수행한다. 본 논문에서는 CNUSAIL-1을 위한 자세결정 알고리즘의 구현 가능성을 제시하였다. 위성의 기준센서는 태양센서, 3축 지자기센서를 이용하며, 관성센서는 MEMS 자이로센서를 사용한다. 큐브위성용 센서는 상대적으로 저가이며, 성능 및 잡음특성이 좋지 않은 단점이 있다. 따라서 자세결정 알고리즘으로 노이즈 특성을 고려할 수 있는 확장칼만필터를 적용하였다. 또한 자세결정의 결정론적 방법인 QUEST 알고리즘과 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. Dawson, E., Nassiff, N., and Velez, D. "Attitude Determination And Control System Design For A CubeSat Mission.", Worchester Polytechnic Institute, 2012
  2. Jensen, K. F., and Vinther, K., "Attitude Determination and control system for AAUSAT3.", Master's Thesis, Aalborg University, 2010
  3. Springmann, J. C., Sloboda, A. J., Klesh, A. T., Bennett, M. W., and Cutler, J. W., "The attitude determination system of the RAX satellite.", Acta Astronautica, Vol. 75, 2012, pp. 120-135 https://doi.org/10.1016/j.actaastro.2012.02.001
  4. Jordi, M. B., "Swisscube attitude determination algorithm design and validation." Master's thesis, Ecole Polytechnique Federale de Lausanne Laboratoire d'Automatique, 2007
  5. M. Y. Yun, B. H. Lee, J. W. Choi and Y. K. Chang, "Modeling of Two-axis Miniature Fine Sun Sensor for Accuracy Improvement", Journal of the Korean Society for Aeronautical and Space Science, vol. 34, No. 7, pp. 71-78, 2006 https://doi.org/10.5139/JKSAS.2006.34.7.071
  6. H. S. Ahn, S. H. Lee, S. W. Rhee and J. S. Chae, "Attitude Determination Algorithm of LEO Satellites in the Sun-Acquisition Mode", Journal of the Korean Society for Aeronautical and Space Science, vol. 30, No. 1, pp. 82-87, 2002 https://doi.org/10.5139/JKSAS.2002.30.1.082
  7. Bowen, J. A., "On-board orbit determination and 3-axis attitude determination for picosatellite applications.", Master's Theses, 2009
  8. Petkov, P., and Slavov, T., "Stochastic modeling of MEMS inertial sensors.", Cybernetics and information technologies, Vol. 10. No. 2, 2010, pp. 31-40.
  9. Institute of Electrical and Electronics Engineers, "IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros.", IEEE, 1999.
  10. Markley, F. L., "EQUIVALENCE OF TWO SOLUTIONS OF WAHBA'S PROBLEM.", The Journal of the Astronautical Sciences, Vol. 147, 2012, pp. 151-159
  11. Kim, I. J., "The state of the art on the attitude determination algorithm for three-axis stabilized spacecraft: (4) Attitude determination algorithm using vector observation (I)", 2002
  12. Crassidis, J. L., and Junkins, J. L., "Optimal estimation of dynamic systems", CRC press, London, 2011, pp. 419-433
  13. Yoo, Y., Koo, S., Kim, G., Kim, S., Suk, J., and Kim, J., "Attitude Control System of a Cube Satellite with Small Solar Sail.", AIAA SciTech, 2015

Cited by

  1. Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail vol.17, pp.4, 2016, https://doi.org/10.5139/IJASS.2016.17.4.579