DOI QR코드

DOI QR Code

Physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3

분무건조공정을 이용한 유산균포집 미분의 제조 및 물리화학적 특성

  • Park, Hye-Mi (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Dae-Hoon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Jeong, Yoo-Seok (Biohealth Convergence Center, Daegu Technopark) ;
  • Jung, Hee-Kyoung (Biohealth Convergence Center, Daegu Technopark) ;
  • Cho, Jae-Gon (Young Poong Co.) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 박혜미 (대구가톨릭대학교 식품공학전공) ;
  • 이대훈 (대구가톨릭대학교 식품공학전공) ;
  • 정유석 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 정희경 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 조재곤 (농업회사법인 (주)영풍) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Received : 2015.03.24
  • Accepted : 2015.05.23
  • Published : 2015.06.30

Abstract

The physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 were investigated. Amylose and damaged starch contents of spray-dried rice flour (S10, S20, S30, and S50) with L. plantarum CGKW3 were 14.18~17.75% and 24.65~34.08%, respectively. The particle size of spray-dried rice flour was $82.28{\sim}131.17{\mu}m$. The rice flour with L. plantarum CGKW3 showed a good powder flowability. The water absorption and water solubility of spray-dried rice flour were 1.96~2.13 and 9.91~21.95%, respectively. Thermal properties measured by differential scanning calorimeter revealed that the enthalpy (${\Delta}H$) for starch gelatinization were highest in the rice flour (S50) with L. plantarum CGKW3. When compared, the viable cell number of spray-dried rice flour were found to be in the following order: S10 (5.78 log CFU/g) < S20 (6.38 log CFU/g) < S30 (6.69 log CFU/g) < S50 (7.11 log CFU/g). The survaival rate of L. plantarum CGKW3 was 60.02-73.85%, which reflected the improvement in the quality of rice flour with an increase in treatment concentration. Based on our results, spray-dried rice flour with L. plantarum CGKW3 could be used in various types of rice foods.

본 연구에서는 국내 쌀의 소비를 증가시키고 쌀 가공제품 개발시 기능성 및 가공적성이 향상된 미분을 제공하고자 분무건조공정에 의해 유산균을 포집한 미분을 제조하였으며 유산균포집 미분의 품질특성 및 유산균 생존율을 조사하였다. 유산균포집 미분의 제조는 미분을 24시간 배양한 유산균 배양액 대비 각각 10%, 20%, 30% 및 50%(w/v)을 첨가하여 분무건조하였다. 유산균포집 미분의 아밀로오즈함량 및 손상전분함량은 각각 14.18~17.75% 및 24.65~34.08%이었다. 유산균포집 미분의 입자크기는 $82.28{\sim}131.17{\mu}m$로 미세캡슐로 제조되었음을 확인하였으며, 전반적으로 구형의 모양을 보여주어 분말 흐름성이 양호할 것으로 판단된다. 수분함량의 경우 유산균을 첨가하지 않은 미분(3.34%)에 비하여 유산균포집 미분이 2.32~2.62%로 유의적으로 낮은 함량을 나타내었으며, 수분흡수지수 및 수분용해지수 측정결과 유산균포집 미분제조시 흡습성이 낮고 용해성이 양호한 분말을 얻을 수 있을 것이라 판단된다. 시차주사열량계에 의한 호화특성을 측정한 결과 유산균포집 미분에서 호화에 필요한 호화엔탈피가 높아 취반 특성이 높을 것으로 사료된다. 유산균포집 미분의 유산균 포집특성을 확인한 결과, 미분의 첨가량이 높아질수록 60.02~73.85%로 유의적으로 높은 유산균 생존율을 보여주어 높은 안정성을 나타내는 것으로 확인되었다. 특히, 50% 미분을 첨가한 유산균포집 미분의 유산균수, pH 및 산도는 각각 7.11 log CFU/g, pH 4.11 및 0.31%이었으며, 이를 통해 기능성이 향상된 유산균포집 미분을 제공할 수 있을 것으로 판단된다. 따라서 분무건조공정을 이용한 유산균포집 미분은 쌀 가공제품 개발시 기능성 및 가공적성이 향상된 미분의 제조가 가능하고 유산균 안정성이 우수하여 기능성 식품 소재 개발에 있어 산업적으로 적용 가능할 것으로 사료된다.

Keywords

References

  1. Ahn GN, Lee WW, Jeon YJ (2014) Effect of different molecular weights of chitosans on the growth of lactic acid bacteria from the traditional fermented foods. J Chitin Chitosan, 19, 194-200
  2. Marteau PR, De Vrease M, Cellier CJ, Schrezenmeir J (2001) Protection from gastointestinal diseases with the use of probiotics. Am J Clin Nutr, 73, 430-436
  3. Kim JY, Park BK, Park HJ, Park YH, Kim BO, Pyo S (2013) Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from Kimchi. J Appl Microbiol, 115, 517-526 https://doi.org/10.1111/jam.12229
  4. Gueimonde M, Senchez B (2012) Enhancing probiotic stability in industrial processes. Microb Ecol Health Dis, 23, 2-5
  5. Marteau P, Minekus M, Havenaar R, Huis JHJ (1997) Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine : validation and the effects of bile. J Dairy Sci, 80, 3031-3037
  6. Walker WA, Duffy LC (1998) Diet and bacterial colonization : role of probiotics and prebiotics. J Nutr Biochem, 9, 668-675 https://doi.org/10.1016/S0955-2863(98)00058-8
  7. Graves RE (1972) Uses for microencapsulation in food additives. Cereal Sci, 17, 107
  8. Reineccius GA (1995) Controlled release techniques in the food industry. In : Encapsulation and controlled release of food ingredients, Risch SJ, Reineccius GA (Editor), American Chemical Society, Washington, DC, USA, p 8-25
  9. Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci, 33, 501-547 https://doi.org/10.1080/10408399309527645
  10. King AK (1995) Encapsulation of food ingredients. A review of available technology, focusing on hydrocolloids. In : Encapsulation and controlled release of food ingredients, Risch SJ, Reineccius GA (Editor), American Chemical Society, Washington, DC, USA, p 26-41
  11. Young RA (1986) Spray drying encapsulation-today's view. Ingred Proc Packaging, 31, 34-38
  12. Jackson LS, Lee K (1991) Microencapsulation and the food industry. Lebensm-wiss Technol, 24, 289-297
  13. Korus J, Tomasik P, Lii CY (2003) Microcapsules from starch granules. J Microencapsul, 20, 47-56 https://doi.org/10.3109/02652040309178048
  14. Ahn JY, Ha TY (2010) Nutritional superiority of Korean rice. Food Preserv Process Ind, 9, 60-64
  15. Hong YH, Ahn HS, Lee SK, Jun SK (1988) Relationship of properties of rice and texture of Japonica and Indica rices of different amylose content. Korean J Crop Sci, 53, 285-291
  16. Kem JS (1998) Effects of amylose content on quality of rice bread. Korean J Food Sci Technol 30, 590-595
  17. Chen JJ, Lu S, Lii CY (1999) Effect of milling on the physicochemical characteristics of waxy rice in Taiwan. Cereal Chem, 76, 796-799 https://doi.org/10.1094/CCHEM.1999.76.5.796
  18. Chiang PY, Yeh AI (2002) Effect of soaking on wet milling of rice. J Cereal Sci, 35, 85-94 https://doi.org/10.1006/jcrs.2001.0419
  19. Statistics Korea (2015) Food grain consumption survey report. Korea, p 31
  20. Lee NY (2013) Starch and quality characteristic of Korean rice cultivar with waxy and non-waxy type. Koran J Crop Sci, 58, 226-231 https://doi.org/10.7740/kjcs.2013.58.3.226
  21. Jun HI, Yang EJ, Kim YS, Song GS (2008) Effect of dry and wet milling on physicochemical properties of black rice flours. J Korean Soc Food Sci Nutr, 37, 900-907 https://doi.org/10.3746/jkfn.2008.37.7.900
  22. Kim WS, Shin M (2007) The properties of rice flours prepared by dry and wet milling of soaked glutious and normal grains. Korean J Food Cookery Sci, 23, 908-918
  23. Han SH, Rho JO (2009) Quality characteristics of Sulgiddeok with different commercial rice flours. Korean J Food Nutr, 22, 402-408
  24. Lee MH, Lee YT (2006) Bread-making properties of rice flours produced by dry, wet and semi-wet milling. J Korean Soc Food Sci Nutr, 35, 886-860 https://doi.org/10.3746/jkfn.2006.35.7.886
  25. Han HM, Cho JH, Koh BK (2011) Processing properties of Korean rice varieties in relation to rice noodle quality. Food Sci Biotechnol, 20, 1277-1282 https://doi.org/10.1007/s10068-011-0176-5
  26. Yang SC, Lee I, Sun JH, Kim DE, Kang WS, Chung HS, Shin M, Ko S (2010) Development of wellreconstituted instantized thin rice grauel. Food Engineering Process, 14, 54-59
  27. Hur S, Cho S, Kum JS, Park JW, Kim DS (2011) Rice flour-a functional ingredient for premicum crabstick. Food Sci Biotechnol, 20, 1639-1647 https://doi.org/10.1007/s10068-011-0226-z
  28. Williams PC, Kuzina FD, Hlynka I (1970) A rapid colorimetric method for estimating the amylose content of starches and flours. Cereal Chem, 47, 411-421
  29. Boyaci IH, Williams PC, Koksel H (2004) A rapid method for the estimation of damaged starch in wheat flours. J Cereal Sci, 39, 139-145 https://doi.org/10.1016/j.jcs.2003.09.002
  30. Phillips RD, Chinnan MS, Granch AI, Miller J, Mcwatters KH (1998) Effects of pretreatment on functional and nutritional properties of cowpea meal. J Food Sci, 53, 805-809
  31. Kim HS, Huber KC (2010) Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch. J Cereal Sci, 51, 256-264 https://doi.org/10.1016/j.jcs.2009.11.015
  32. Han HM, Cho JH, Koh BK (2012) Effect of grinding method on flour quality in different rice cultivars. J Korean Soc Food Sci Nutr, 41, 1596-1602 https://doi.org/10.3746/jkfn.2012.41.11.1596
  33. Park JD, Choi BK, Kum JS, Lee HY (2006) Physicochemical properties of brown rice flours produced under different drying and milling conditions. Korean J Food Sci Technol, 38, 495-500
  34. Jeong JW, Park KJ, Kim MH, Kim DS (2006) Changes in quality of spray-dried and freeze-dried Takju powder during storage. Korean J Food Sci, 38, 513-520
  35. Choi ID (2010) Fatty acids, amino acids and thermal properties of specialty rice cultivars. J Korean Soc Food Sci Nutr, 39, 1405-1409 https://doi.org/10.3746/jkfn.2010.39.9.1405
  36. Ko JH, Park KH (1989) Differential scanning calorimetric study of amylose-lipid complex and amylose content in rice starch. Korean J Food Sci Technol, 21, 556-561
  37. Choi CY, Kang SK, Park SK, Jang MK, Nah JW (2007) Preparation and characterization of lactic acid bacteria encapsuled with alginate microsphere. J Life Sci, 17, 1754-1759 https://doi.org/10.5352/JLS.2007.17.12.1754
  38. Lee KW, Jang KI, Lee YB, Sohn HS, Kim KY (2007) Development of probiotic microcapsules for the preservation of cell viability, Korean J Food Sci Technol, 39, 66-70

Cited by

  1. Quality characteristics of spray dried powder from unripe fig extract vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.355