DOI QR코드

DOI QR Code

Droplet Size Distribution Effect on the Electro-Optical Properties of Emulsion Type Polymer Dispersed Liquid Crystal

에멀전 방식의 고분자 분산형 액정의 전기 광학 특성에 미치는 액적 크기 분포의 영향

  • Yoo, Hee Sang (Department of Display Engineering, Hoseo University) ;
  • Oh, Nam-Seok (Department of Display Engineering, Hoseo University) ;
  • Yan, Jin (Department of Display Engineering, Hoseo University) ;
  • Kwon, Soon-Bum (Department of Display Engineering, Hoseo University)
  • 유희상 (호서대학교 디스플레이공학과) ;
  • 오남석 (호서대학교 디스플레이공학과) ;
  • 김안 (호서대학교 디스플레이공학과) ;
  • 권순범 (호서대학교 디스플레이공학과)
  • Received : 2014.12.23
  • Accepted : 2015.06.09
  • Published : 2015.07.01

Abstract

We established the emulsion method using membrane filter with precise control of LC droplet distribution in PDLC. PDLC cells with various LC droplet size distributions such as single droplet sizes of $1.0{\mu}m$, $1.9{\mu}m$ and $3.5{\mu}m$, the mixture of two different LC droplet sizes and the mixture of three different LC droplet sizes were fabricated and the electro-optical properties of the emulsion type PDLC cells with various droplet size distribution were investigated. In the appropriate droplet size range, the PDLCs with the single droplet sizes distributions have good electro optical properties than those with the mixture of three different LC droplet sizes. In addition, the PDLC cells with the mixture of two different LC droplet sizes have the better electro optical properties than those with single droplet sizes distribution. The PDLC cell with dual droplet size distribution of $1.0+1.9{\mu}m$ shown the best electro optical properties than the PDLC cells with other size distributions. This method enabled us to find the proper LC droplet size distribution for achieving both high transmittance and contrast ratio.

Keywords

References

  1. J. L. West, Mol. Crys. Liq. Crys., 157, 427 (1988).
  2. A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, A. Sakaigawa, G. Nelles, and A. Yasuda, J. SID, 16, 137 (2008).
  3. K. J. Yang, S. C. Lee, and B. D. Choi, Jpn. J. Appl. Phys., 49, 05EA05 (2010).
  4. J. E. Jung, G. H. Lee, J. E. Jang, K. Y. Hwang, F. Ahmad, J. Muhammad, J. W. Lee, and Y. J. Jeon, J. Opt. Mater., 34, 256 (2011). [DOI: http://dx.doi.org/10.1016/j.optmat.2011.08.027].
  5. G. P. Montgomery Jr, J. L. West, and W. Tamuralis, J. Appl. Phys., 69, 1605 (1991). [DOI: http://dx.doi.org/10.1063/1.347256].
  6. R. Barchini, J. G. Gordon ll, and M. W. Hart, Jpn. J. Appl. Phys., 37, 6662 (1998). [DOI: http://dx.doi.org/10.1143/JJAP.37.6662].
  7. P. S. Drazic, Liquid Crystal Dispersions (World Scientific, 1995) p. 33. [DOI: http://dx.doi.org/10.1142/2337].
  8. P. Malik, K. K. Raina, J. Opt. Mater., 27, 613 (2004). [DOI: http://dx.doi.org/10.1016/j.optmat.2004.07.012].
  9. F. Spyropoulos, D. M. Lloyd, R. D. Hancocks, and A. K. Pawlik, J. Sci. Fool. Agric., 94, 613 (2014). [DOI: http://dx.doi.org/10.1002/jsfa.6444].
  10. J. L. Fergason, Encapsulated Liquid Crystal and Method, US Patent 4,435,047 (1984).