DOI QR코드

DOI QR Code

광학 네트워크-온-칩에서 WDM/TDM 기반 채널 할당 기법

WDM/TDM-Based Channel Allocation Methodology in Optical Network-on-Chip

  • 홍유민 (성균관대학교 정보통신대학) ;
  • 이재훈 (성균관대학교 정보통신대학) ;
  • 한태희 (성균관대학교 정보통신대학)
  • Hong, Yu Min (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Lee, Jae Hoon (College of Information & Communication Engineering, Sungkyunkwan University) ;
  • Han, Tae Hee (College of Information & Communication Engineering, Sungkyunkwan University)
  • 투고 : 2015.05.20
  • 심사 : 2015.07.06
  • 발행 : 2015.07.25

초록

광학 네트워크-온-칩(Optical Network-on-Chip, ONoC) 아키텍처는 향후 폭증하는 칩 내부 커뮤니케이션 병목 현상을 해결 할 새로운 패러다임으로 대두되고 있다. ONoC에 대한 최근의 연구들은 파장 분할 다중화(Wavelength division multiplexing, WDM) 방식을 이용하여 광 신호의 병렬 전송을 지원하고 경로 충돌을 방지하는데 초점을 두었다. 하지만 신호의 간섭 및 감쇄에 의해 하나의 도파관에서 수용할 수 있는 파장 수는 제한되어 있고, 이로 인하여 노드 수 증가에 따라 파장이 다른 광 신호 개수를 증가시키는 기존의 파장 분할 방식 연구들은 구현의 한계를 보일 것이라 전망된다. 이러한 문제를 해결하기 위하여 본 논문에서는 WDM에 시 분할 다중화(Time division multiplexing, TDM) 방식을 접목시켰다. 또한 채널 최적화 기법을 제안함으로써 TDM 방식의 접목으로 인한 여분채널 및 지연시간 문제를 최소화 하였다.

An optical network-on-chip(ONoC) architecture is emerging as a new paradigm for solving on-chip communication bottleneck. Recent studies on ONoC have been focusing on supporting the parallel transmission and avoiding path collisions using wavelength division multiplexing(WDM). However, since the maximum number of wavelengths, which a single waveguide can accommodate is limited by crosstalk and insertion loss. Therefore previous WDM studies based on incrementing the number of different wavelengths according to the number of nodes would be infeasible due to the implementation complexity. To solve such problems, we combined time division multiplexing(TDM) and wavelength-routed ONoC, along with an optimized channel allocation algorithm, which can minimize the number of extra wavelength channels and latency caused by combining TDM scheme.

키워드

참고문헌

  1. A. Shacham and K. Bergman, et al., "On the Design of a Photonic Network-on-Chip," in Proc. of IEEE Conf. on Network-on-Chip(NOCS), pp. 53-64, Princeton, NJ, USA, May 2007.
  2. N. Kirman and J. Martinez, et al., "A power-efficient all-optical on-chip interconnect using wavelength-based obvious routing," in Proc. of 15th edition on Architectural support for programing languages and operating systems (ASPLOS), pp. 15-28, Pittsburgh, PA, USA, March 2010.
  3. M. Briere and B. Girodias, et al., "System level assessment of an optical Noc in an MPSoC platform," in Proc. of IEEE Conf. on Design, Automation & Test in Europe Conference & Exhibition(DATE), pp. 1-6, Nice, France, April 2007.
  4. N. Sherwood-Droz and k. Preston, et al., "Device guidelines for WDM interconnects using silicon microring resonators," in Proc. of Workshop on the Interaction between Nanophotonic Devices and Systems(WINDS), pp. 53-64, Atlanta, GA, USA, December 2010.
  5. B. A. Small, B. G. Lee, et al., "Multiple-wavelength integrated photonic networks based on microring resonator devices," Journal of Optical Networking, Vol. 6, Issue 2, pp. 112-120, October 2007. https://doi.org/10.1364/JON.6.000112
  6. B. G. Lee, X. Chen, et al., "Ultrahigh-Bandwidth WDM Signal Integrity in Silicon-on-Insulator Nanowire Waveguides," in Proc. IEEE of Conf. on Lasers and Electro-Optics Society, pp. 472-473, Lake Buena Vista, FL USA, October 2007.
  7. G. Hendry and R. Robonson, et al., "Time-divisionmultiplexed arbitration in silicon nanophotonic network-on-chip for high performance chip multiprocessors," Journal of Parallel and Distributed Computing, Vol. 71, Issue 5, pp. 641-650, May 2011. https://doi.org/10.1016/j.jpdc.2010.09.009
  8. L. Bononi, and N. Concer, et al., "Simulation and analysis of network on chip architectures: ring, spidergon and 2D mesh," in Proc. of IEEE Conf. on Design, automation and test in Europe(DATE), pp. 154-159, Munich, Germany, March 2006.
  9. B. Aleksandr and p. Kyle, et al., "Photonic Network-on-Chip Architectures Using Multilayer Deposited Silicon Materials for High-Performance Chip Multiprocessors," ACM Journal on Emerging Technologies in Computing Systems(JETC), Vol. 7, Issue 2, Article 7, June 2011.
  10. J. S. Lott and N. N. Ledentsov, et al., "850nm VCSELs for up to 40 Gbit/s Short Reach Data Links," in Proc. of Conf. on Lasers and Electro-Optics(CLEO) and Quantum Electronics and Laser Science Conference(QELS), pp. 1-2, San Jose, CA, USA, May 2010.