DOI QR코드

DOI QR Code

A Study on the Agglomeration of BaTiO3 Nanoparticles with Differential Synthesis Route

나노입자 합성방법에 따른 타이타늄산바륨 나노입자뭉침 현상 연구

  • Han, W.-J. (Department of Materials Science and Engineering, Yonsei University) ;
  • Yoo, B.-Y. (Korea Electronics Technology Institute) ;
  • Park, H.-H. (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2015.05.28
  • Accepted : 2015.06.23
  • Published : 2015.06.30

Abstract

$BaTiO_3$ is typical ferromagnetic materials with dielectric constant of above 200. $BaTiO_3$ nanoparticles applications are available for multiple purposes such as nanocapacitors, ferroelectric random access memories, and so on. Applications are is diverse from the dispersion of nanoparticles depending on the route of synthesis. In this study, $BaTiO_3$ nanoparticles were synthesized by two different methods such as oxalate method and sol-gel process (ambient condition sol method). Particle size and dispersion condition were studied according to the preparation method and capping agent. Poly vinyl pyrrolidone (PVP) was used as a capping agent in oxalate method and tetrabutylammonium hydroxide (TBAH) used as a capping agent in sol-gel process each. Cubic crystal structure of $BaTiO_3$ phase could be confirmed by X-ray diffraction analysis. Fourier transform-infrared spectroscopy was employed for the confirmation of the capping agent and $BaTiO_3$ nanoparticles. The particle size and distribution analysis was also performed by particles size analyzer and scanning electron microscope.

타이타늄산바륨($BaTiO_3$)은 대표적인 강유전 물질로 유전상수가 200 이상의 값을 나타내는 물질이다. 타이타늄산바륨을 나노입자화하면 나노커패시터(nanocapacitors)와 강유전체 메모리(ferroelectric random access memories)와 같이 여러 용도로 응용 가능하다. 하지만, 나노입자의 합성방법에 따라 나노입자의 분산특성이 달라지며 이에 활용할 수 있는 분야가 달라질 수 있다. 본 연구에서는 타이타늄산바륨 나노입자를 옥살레이트법(oxalate method)과 sol-gel법(ambient condition sol method)으로 합성하고 각 방법에 따른 나노입자의 크기와 분산상태를 확인하였다. 각각의 공정에 사용한 캡핑 에이전트(capping agent)는 poly vinyl pyrrolidone (PVP)을 옥살레이트법에 이용하였고 sol-gel법에는 tetrabutylammonium hydroxide (TBAH)를 이용하였다. 합성된 나노입자의 X-선 회절 분석 패턴을 분석하여 cubic 결정구조를 갖는 타이타늄산바륨을 확인하였다. 푸리에(Fourier) 변환 적외선 분광분석을 이용하여 나노입자의 캡핑 에이전트 결합상태와 시차주사현미경과 입도분석기를 이용한 나노입자의 크기 및 뭉침 변화를 확인하였다.

Keywords

References

  1. O. Carny, D. E. Shalev and E. Gazit, "Fabrication of Coaxial Metal Nanocables Using a Self-Assembled Peptide Nanotube Scaffold", Nano Lett., 6(8), 1594 (2006). https://doi.org/10.1021/nl060468l
  2. X. Wang and Y. Li, "Rare-Earth-Compound Nanowires, Nanotubes and Fullerene-Like Nanoparticles: Synthesis, Characterization and Properties", Chem. Eur. J., 9(22), 5627 (2003). https://doi.org/10.1002/chem.200304785
  3. Q. Lu, F. Gao and D. Zhao, "One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process", Nano Lett., 2(7), 725 (2002). https://doi.org/10.1021/nl025551x
  4. J. Hu, T. W. Odom and C. M. Lieber, "Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes", Accounts Chem. Res. 32(5), 435 (1999). https://doi.org/10.1021/ar9700365
  5. X. Batlle and A. Labarta, "Finite-Size Effects in Fine Particles: Magnetic and Transport Properties", J. Phys. D: Appl. Phys., 35(6), R15 (2002). https://doi.org/10.1088/0022-3727/35/6/201
  6. K. Bussmann, G. A. Prinz, S. F. Cheng and D. Wang, "Switching of Vertical Giant Magnetoresistance Devices by Current through the Device", Appl. Phys. Lett., 75, 2476 (1999). https://doi.org/10.1063/1.125053
  7. S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z. Q. Li and Y. Kawazoe," Critical Size and Anomalous Lattice Expansion in Nanocrystalline $BaTiO_3$ Particles", Phys. Rev. B, 67, 019901 (2003).
  8. L. V. Lutsev, A. I. Stognij and N. N. Novitskii, "Giant Magnetoresistance in Semiconductor/Granular Film Heterostructures with Cobalt Nanoparticles", Phys. Rev. B, 80, 184423 (2009). https://doi.org/10.1103/PhysRevB.80.184423
  9. H. T. Vo and F. G. Shi, "Towards Model-Based Engineering of Optoelectronic Packaging Materials: Dielectric Constant Modeling", Microelectron. J., 33, 409 (2002). https://doi.org/10.1016/S0026-2692(02)00010-1
  10. E. K. Lee, K. T. Eun, Y. S. Ahn, Y. T. Kim, M. W. Chon and S. H. Choa, "Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process", J. Microelectron. Packag. Soc., 21(4), 15 (2014). https://doi.org/10.6117/kmeps.2014.21.4.015
  11. S. C. Gong, H. S. Lim, I. S. Shin, H. H. Park, H. T. Jeon, Y. C. Chang and H. J. Chang, "A Study of Soluble Pentacene Thin Film for Organic Thin Film Transistor", J. Microelectron. Packag. Soc., 14(3), 1 (2007).
  12. D. K. Hwang, K. Lee, J. H. Kim, S. Im and C. S. Kim, "Low-Voltage High-Mobility Pentacene Thin-Film Transistors with Polymer/High-k Oxide Double Gate Dielectrics", Appl. Phys. Lett., 88(24), 243513 (2006). https://doi.org/10.1063/1.2206555
  13. H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien and M. J. Tsai, "Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust $HfO_2$ Based RRAM", IEDM 2008, 297, IEEE international (2008).
  14. D. E. Kwon, M. H.Azarian and M. Pecht, "Failure Prediction of Multilayer Ceramic Capacitors (MLCCs) under Temperature-Humidity-Bias Testing Conditions Using Non-Linear Modeling", J. Microelectron. Packag. Soc., 20(3), 7 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.007
  15. A. Feteira, D. C. Sinclair, I. M. Reaney, Y. Somiya and M. T. Lanagan, "$BaTiO_3$-Based Ceramics for Tunable Microwave Applications", J. Am. Ceram. Soc., 87(6), 1082 (2004). https://doi.org/10.1111/j.1551-2916.2004.01082.x
  16. J. A. Davies and A. Dutremez, "Electroceramics from Source Materials via Molecular Intermediates: $BaTiO_3$ from $TiO_2$ $[Ti(catecholate)_3]^{2-}$", J. Am. Ceram. Soc., 73, 1429 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05218.x
  17. S. Bhattacharhee, M. K. Paria and S. H. Maiti, "Occurrence of Excess Titania in Strontium Titanate Prepared by the Oxalate Precipitation Route", Ceram. Int., 18, 295 (1992). https://doi.org/10.1016/0272-8842(92)90077-Q
  18. T. Yoko, K. Kamiya and K. Tanaka, "Preparation of Multiple Oxide $BaTiO_3$ Fibers by Sol-Gel Method", J. Mater. Sci., 25, 3922 (1990). https://doi.org/10.1007/BF00582461
  19. H. B. Shrama and A. Mansingh, "Sol-Gel Processed Barium Titanate Ceramics and Thin Films", J. Mater. Sci., 33, 4455 (1998). https://doi.org/10.1023/A:1004576315328
  20. D. Hennings and S. Schreinemacher, "Characterization of Hydrothermal Barium Titanate", J. Eur. Ceram. Soc., 9, 41 (1992). https://doi.org/10.1016/0955-2219(92)90075-O
  21. E. Ciftci, M. N. Rahanman and M. Shumsky, "Hydrothermal Precipitation and Characterization of Nanocrystalline $BaTiO_3$ Particles", J. Mater. Sci., 36, 4975 (2001).
  22. I. J. Clark, T. Takeuchi, N. Ohtori and D. C. Sinclair, "Hydrothermal Synthesis and Characterization of $BaTiO_3$ Fine Powders: Precursors, Polymorphism and Properties", J. Mater. Chem., 9, 83 (1999). https://doi.org/10.1039/a805756g
  23. D. H. Mun and J. S. Ha, "The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-Temperature Aqueous Solution Method", J. Microelectron. Packag. Soc., 20(1), 33 (2013). https://doi.org/10.6117/kmeps.2013.20.1.033
  24. T. S. Her, E. Matijevic and M. C. Chon, "Controlled Double-Jet Precipitation of Uniform Colloidal Crystalline Sr- and Zrdoped Barium Titanates", J. Mater. Res., 11, 1321 (1996).
  25. P. Gherardi and E. matijevic, "Homogeneous Precipitation of Spherical Colloidal Barium Titanate Particles", Colloids Surf., 32, 257 (1988). https://doi.org/10.1016/0166-6622(88)80021-0
  26. M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri and R. B. Lennox, "Gold Nanoparticle/Polymer Nanocomposites: Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density", Langmuir, 21(13), 6063 (2005). https://doi.org/10.1021/la047193e
  27. B. G. Trewyn, I. I. slowing, S. Girl, H. T. Chen and V. S. Y. Lin, "Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release", Acc. Chem. Res., 40(9), 846 (2007). https://doi.org/10.1021/ar600032u
  28. C. Huang, H. Bai, Y. Huang, S. Liu, S. Yen and Y. Tseng, "Synthesis of Neutral/Hydrosol and Its Application as Antireflective Self-Cleaning Thin Film", Int. J. Photoenergy, 2012, 620764 (2012).
  29. T. Tanaka, Y. Ebina, K. Takada, K. Kurashima and T. Sasaki, "Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals", Chem. Mater., 15(18), 3564 (2003). https://doi.org/10.1021/cm034307j
  30. U. K. H. Bangi, W. Han, B. Yoo and H. H. Park, "Effects of Successive Additions of Two Capping Ligands on the Structural Properties of PbO Nanoparticles", J. Nanopart. Res., 15(11), 2070 (2013). https://doi.org/10.1007/s11051-013-2070-y
  31. S. J. Chang, W. S. Liao, C. J. Ciou, J. T. Lee and C. C. Li, "An Efficient Approach to Derive Hydroxyl Groups on the Surface of Barium Titanate Nanoparticles to Improve Its Chemical Modification Ability", J. Colloid Interface Sci., 329(2), 300 (2009). https://doi.org/10.1016/j.jcis.2008.10.011
  32. H. Xu, L. Gao and J. Guo, "Preparation and Characterizations of Tetragonal Barium Titanate Powders by Hydrothermal Method", J. Eur. Ceram. Soc., 22(7), 1163 (2002). https://doi.org/10.1016/S0955-2219(01)00425-3
  33. D. Tao and F. Wei, "New Procedure towards Size-Homogeneous and Well-Dispersed Nickel Oxide Nanoparticles of 30 nm", Mater. Lett., 58(25), 3226 (2004). https://doi.org/10.1016/j.matlet.2004.06.015
  34. B. L. Newalkar, S. Komarneni and H. Katsuki, "Microwave-Hydrothermal Synthesis and Characterization of Barium Titanate Powders", Mater. Res. Bul., 36(13), 2347 (2001). https://doi.org/10.1016/S0025-5408(01)00729-2
  35. K. Nogi, M. Naito and T. Yokoyama, Nanoparticle Technology Handbook, 2nd Ed., pp.84-87, Elsevier (2012).
  36. J. L. Shi, "Relation between Coarsening and Densification in Solid-State Sintering of Ceramics: Experimental Test on Superfine Zirconia Powder Compacts", J. Mater. Res., 14(4), 1389 (1999). https://doi.org/10.1557/JMR.1999.0189

Cited by

  1. Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.015
  2. Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique vol.22, pp.4, 2015, https://doi.org/10.6117/kmeps.2015.22.4.083