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I. INTRODUCTION 
 

Most real-world data cannot be applied directly to any 

data mining algorithm due to the dimensional nature of the 

dataset. In knowledge mining, similar patterns in a large 

dataset are clustered. The major difficulty faced due to an 

increasing number of features and, correspondingly, 

dimensionality, has been called ‘the curse of dimensionality’ 

[1]. Therefore, feature selection is an important pre-

processing step before any model is applied to the data. 

Moreover, with an increase in the number of features, the 

complexity grows exponentially. 

In order to reduce the dimensionality of the data, feature 

selection is of paramount importance in most real-world 

tasks. Feature selection involves removing redundant and 

irrelevant features, so that the remaining features can still 

represent the complete information. Sometimes, additional 

features make no contribution to the performance of the 

classification task. Reducing the dimensionality of a dataset 

provides insight into the data even before the application of 

a data mining process. 

A subset of the features is derived using the values of the 

features, as calculated by mathematical criteria that provide 

information about the contribution of each feature to the 

dataset. Various evaluation criteria exist, according to which 

feature selection can be broadly classified into four 

categories: the filter approach, the wrapper approach, the 

embedded approach, and the hybrid approach [2-5] 

In filter feature selection, the feature subset is selected as 

a pre-processing step before the application of any learning 

and classification processes. Thus, feature selection is 

independent of the learning algorithm that will be applied. 
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Abstract 

Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, 

ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information 

gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to 

identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and 

CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the 

classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has 

been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features 

obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The 

effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.   
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This is known as the filter approach because the features are 

filtered out of the dataset before any algorithms are applied. 

This method is usually faster and computationally more 

efficient than the wrapper approach [2]. 

In the wrapper method [6], as in simulated annealing or 

genetic algorithms, features are selected in accordance with 

the learning algorithm which will then be applied. This 

approach yields a better feature subset than the filter 

approach, because it is tuned according to the algorithm, but 

it is much slower than the filter approach and has to be rerun 

if a new algorithm is applied. 

The wrapper model requires the use of a predetermined 

learning algorithm to determine which feature subset is the 

best. It results in superior learning performance, but tends to 

be more computationally expensive than the filter model. 

When the number of features becomes very large, it is 

preferable to use the filter model due to its computational 

efficiency [4]. 

A recently proposed feature selection technique is the 

ensemble learning-based feature selection method. The 

purpose of the ensemble classifier is to produce many 

diverse feature selectors and combine their outputs [7]. 

This paper presents an algorithm that is simple and fast to 

execute. The algorithm works in steps. First, irrelevant 

features are removed using the concept of symmetric 

uncertainty (SU). A threshold value of SU is established, 

enabling irrelevant features to be removed. The threshold 

value employed in this algorithm was tested against various 

other threshold values, and we found that other threshold 

values led to the identification of a different number of 

relevant features. After obtaining a set of relevant features, a 

minimum spanning tree (MST) is constructed. The 

redundant features are removed from the MST based on the 

assumption that the correlation among two features should 

always be less than their individual correlation with the 

class. Features that are found to have a greater correlation 

with the class than their correlation with other features are 

added to the cluster, and other features are ignored. The next 

section describes the existing algorithms in this field. 

Section III explains the definitions and provides an outline 

of the work. Section IV discusses how the algorithm is 

implemented and analysed. Section V discusses datasets and 

performance metrics. Results are discussed in section VI, 

and the last section contains the conclusion.  

 

 

II. RELATED WORK 
 

The goal of feature selection is to determine a subset of 

the features of the original set by removing irrelevant and 

redundant features. 

Liu and Yu [8] have established that the general process 

of feature selection can be divided into four processes: 

subset generation, subset evaluation, stopping criterion, and 

subset validation. 

In the subset generation step, the starting point of the 

search needs to be decided first. A search strategy is then 

implemented: exhaustive search, heuristic search, or random 

search. All of the search strategies operate in three 

directions to generate a feature subset: forward (adding a 

feature to a selected subset that begins with the empty set), 

backward (eliminating features from a selected subset that 

begins with the full original set) and bidirectional (both 

adding and removing features). The generated subset is then 

evaluated based on mathematical criteria. These 

mathematical criteria are divided into the filter, wrapper, 

hybrid, and embedded approaches. Within the filter model, 

many algorithms have been proposed, including Relief [9], 

Relief-F, Focus, FOCUS-2 [10], correlation-based feature 

selection (CFS) [11], fast-correlation-based filter (FCBS) 

[12], and FAST [13]. Some of these algorithms, including 

Relief, FCBS, and FAST, employ a threshold to decide 

whether a feature is relevant. 

The Relief algorithm for feature selection uses distance 

measures as a feature subset evaluation criterion. It weighs 

(ranks) each feature under different classes. If the score 

exceeds a specified threshold, then the feature is retained; 

otherwise it is removed [9]. 

CFS algorithms are based on the concept of information 

theory. The FCBS algorithm developed by Yu and Liu [12] 

removes both irrelevant and redundant features, using SU as 

a goodness measure. It uses the concept of correlation based 

on the information theoretic concept of mutual information 

and entropy to calculate the uncertainty of a random 

variable.  

Hall and Smith [3] have developed a CFS algorithm for 

feature selection that uses correlation to evaluate the value 

of features. This approach is based on the idea that good 

feature subsets contain features highly correlated with 

(predictive of) the class, yet uncorrelated with (not 

predictive of) each other [11]. In this algorithm, it is 

necessary to find the best subset from the 2
n
 possible subsets 

of the n features. The subset generation strategy used is the 

best-first search. In this strategy, the feature class and the 

feature-feature correlation matrix is given as input. Initially, 

the feature set is empty; as each feature is added, its value is 

evaluated. The feature set with the highest evaluation is 

chosen. Subsequently, the next subsets are added to the best 

one and evaluated. Finally, the best subset found is returned 

[11]. This approach uses Pearson correlation as a heuristic 

for calculating the value of each feature subset that is 

generated. The search terminates when the best subset is 

found. It stops when five consecutive fully expanded non-

improving subsets are found. 

The subset generation and evaluation process terminates 

when it reaches the stopping criterion. Different stopping 
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criteria are used in different algorithms. Some involve a 

specified limit on the number of features or a threshold 

value. Finally, validation data are used to validate the 

selected subset. In real-world applications, we do not have 

any prior knowledge of the relevance of a feature set. 

Therefore, observations are made of how changes in the 

feature set affect the performance of the algorithm. For 

example, the classification error rate or the proportion of 

selected features can be used as a performance indicator for 

a selected feature subset [8].  

The adjusted Rand index, which is a clustering validation 

measure, has been used as a measure of correlation between 

the target class and a feature. Such metrics rank the features 

by making a comparison between the partition given by the 

target class and the partition of each feature [14]. 

General graph-theoretic clustering uses the concept of 

relative neighbourhood graphs [15, 16]. Using the concept 

of neighbourliness, we define RNG(V) as the representative 

of the family of the graph consisting of a finite set of points 

V. RNG(V) is called the relative neighbourhood graph. 

Some clustering-based methods construct a graph using 

the k-nearest-neighbour approach [17]. Chameleon, which is 

a hierarchical clustering algorithm, uses a k-nearest-

neighbour graph approach to construct a sparse graph. It 

then uses an algorithm to find a cluster by repeatedly 

combining these subclusters. Chameleon is applicable only 

when each cluster contains a sufficiently large number of 

vertices (data items).  

According to Xu et al. [18], the MST clustering algorithm 

has been widely used. They have used this approach to 

represent multidimensional gene expression data. It is not 

pre-assumed that the data points are separated by a regular 

geometric curve or are grouped around centres in any MST-

based clustering algorithm. 

Many graph-based clustering methods take advantage of 

the MST approach to represent a dataset. Zhong et al. [17] 

employed a two-round MST-based graph representation of a 

dataset and developed a separated clustering algorithm and a 

touching clustering algorithm, encapsulating both algorithms 

in the same method. Zahn [19] divided a dataset into different 

groups according to structural features (distance, density, etc.) 

and captured these distinctions with different techniques. 

Grygorash et al. [20] proposed two algorithms using MST-

based clustering algorithms. The first algorithm assumes that 

the number of clusters is predefined. It constructs an MST of 

a point set and uses an inconsistency measure to remove the 

edges. This process is repeated for k clusters and forms a 

hierarchy of clusters until k clusters are obtained. The second 

algorithm proposed partitions the point set into a group of 

clusters by maximizing the overall standard deviation 

reduction. 

Shi and Malik [21] published a normalized cut criterion. 

Ding et al. [22] proposed a min-max clustering algorithm, in 

which the similarity or association between two subgraphs 

is minimized, while the similarity within each subgraph is 

maximized. It has been shown that the min-max cut leads to 

more balanced cuts than the ratio cut and normalized cut 

[21]. 

Our algorithm uses Kruskal’s algorithm, which is an 

MST-based technique of for clustering features. The clusters 

formed are not based on any distance or density measures. A 

feature is added to the cluster if it is not redundant to any of 

the features already present in it. 

 

 

III. FEATURE SUBSET SELECTION METHOD 

 

Entropy feature selection is a pre-processing step in many 

applications. Subsets are generated and then evaluated based 

on a heuristic. The main aim is to find the subset which has 

relevant and non-redundant features. In order to evaluate 

and classify features, we have used the information theoretic 

concept of information gain and entropy. Entropy is a 

measure of the unpredictability of a random variable. 

Entropy is related to the probabilities of the random variable 

rather than their actual values. Entropy is defined as: 

 

H(X) = − ∑ p(𝑥) log2 p(𝑥)x∈Z .          (1) 

 

Here, X is a discrete random variable with the alphabet Z 

and the probability mass function p(x) = Pr{X = x}, x ϵ Z.  

If X and Y are discrete random variables, Eqs. (2) and (3) 

give the entropy of Y before and after observing X. 

 

    H(Y) =  − ∑ 𝑝(𝑦) log2 𝑝(𝑦)𝑦∈𝑌 ,          (2) 

 

H(Y|X) =− ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥) log2 𝑝(𝑦|𝑥)𝑦∈𝑌𝑥∈𝑋 .  (3) 

 

The amount by which the entropy of Y decreases reflects 

the additional information about Y provided by X and is 

called the information gain [23]. Information gain is a 

measure of the amount of information that one random 

variable contains about another random variable. The 

information gain I(X, Y) is the relative entropy between the 

product distribution and the joint distribution [24]. 

 

I(Y, X) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋  ,    (4) 

Gain(Y|X)  = H(Y) – H(Y|X) 

               = H(X) – H(X|Y ) 

         = H(Y) + H(X) – H(X, Y).           (5) 

 

Information gain is the amount of information obtained 

about X after observing Y, and is equal to the amount of 

information obtained about Y after observing X. 

Unfortunately, information gain is biased in favour of 
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features with many outcomes. That is, attributes with many 

diverse values will appear to gain more information than 

those with less diverse values even if they are actually no 

more informative. Symmetrical uncertainty [25] 

compensates for the bias of information gain toward 

attributes with more values and normalizes its value to the 

range [0,1]. SU is defined as: 

 

SU =2 *[
gain

H(𝑌)+H(𝑋)
] .            (6) 

 

Sotoca and Pla [26] have used conditional mutual 

information as an information theoretic measure. Conditional 

mutual information I(X; Y/Z) can be defined with regard to 

two random variables X and Z, over the same dataset, and the 

relevant variable Y, representing the class labels. I(X; Y/Z) can 

be interpreted as how much information the feature space X 

can predict about the relevant variable Y that the feature space 

Z cannot [24]. 

 
A. Outline 

 

The procedure of removing irrelevant and redundant 

features is shown in Fig. 1. 

The goal of obtaining relevant features is accomplished 

by defining an appropriate threshold for the SU value. If the 

attributes from the table meet this condition, then they 

considered relevant and kept. Subsequently, pair-wise 

correlation is performed to remove redundant features and a 

complete weighted graph is created. An MST is then 

constructed. If features meet the criterion defined by the 

threshold value, they are added to the cluster of the feature 

subset, and otherwise are ignored. 

 

 

 

Fig. 1.  Flowchart of feature selection [27]. 

IV. METHODOLOGY AND ANALYSIS 
 

Our algorithm uses the concept of SU described above to 

solve the problem of feature selection. It is a two-step process; 

first, irrelevant features are removed, and then redundant 

features are removed from the dataset and the final feature 

subset is formed.  

The irrelevant feature removal process evaluates whether 

a feature is relevant to the class or not. For each data set in 

Table 1, the algorithm given in Fig. 2 is applied to determine 

the relevant features corresponding to different threshold 

values. The input to this algorithm is the dataset with m 

features, data = {F0,F1,F2,………Fm }, the class C, and a 

threshold value. For each feature, information gain and SU 

for the class SU(Fi, C) is determined according to Eqs. (5) 

and (6). In order to determine the relevance of a feature, a 

user-defined threshold is applied on the SU value [4]. A 

subset FS of relevant features can be determined by a 

threshold on the SU value (θ), such that Fi ϵ S’, 1<= i <= h, 

Sui,c > = θ. A relevant feature subset FS={F0’,F1’,F2’, 

……..Fh’} is formed, where h < m. 

Here, for the input dataset D, the algorithm starts with the 

empty set as the starting point and then adds features to it. It 

uses a heuristic or sequential search strategy for subset 

generation. Each subset generated is evaluated by SU. The 

search iterates and keeps all relevant features found as 

subsets if they meet a predefined threshold. The algorithm 

outputs a feature subset. 

Time Complexity: The time complexity of the method 

applied above is quite low. It has linear complexity and is 

dependent on the size of the data, as defined by the number 

of features and number of instances in the dataset. The time 

complexity is O(m), if the number of features is m. Each 

feature is referred once and its relevance is checked 

according to the threshold value. 

 

 

Input: Data (F0, F1, F2,……,Fm) // data set of m features 

Θ // predefined threshold 

C // class label corresponding to each instance 

Output: R  // relevant feature 

       FS // relevant feature subset 

1. Begin 

2. FS=0; 

3. For i=1 to m do 

4. Z=MI(Fi,C); 

5. R=SU(Fi,C); 

6. If R > θ then, 

7. FS=FS U {Fi} 

8. Return FS; 

9. End; 

Fig. 2. ModifiedFAST algorithm for removing irrelevant features. 
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Input: FS // relevant feature subset  

Data (F0, F1, F2,……,Fm) // data set of m features 

Output: cluster // final feature subset 

1. Begin; 

2. For each pair of features {fi,fj}ϵ FS do 

3. Correlation(i,j)= SU(fi,fj); 

4. Construct a 2D correlation matrix with value of 

correlation  

5. between each feature. 

6. SpanTree [edge, cost]=kruskal(M); 

7. For each edge E(i,j) ϵ SpanTree 

8. If cost E(i,j)< SU (fi, C) && cost E(i,j)< SU(fj,C) 

9. If cluster ∄ i 

10. cluster=cluster ∪ i 

11. If  cluster ∄ j 

12. cluster=cluster ∪ j 

13. Return cluster; 

14. End; 

Fig. 3. ModifiedFAST algorithm for redundant feature removal. 

 

 

In order to remove redundant features from the subset 

obtained above, a graph-based clustering method is 

applied. The vertices of the graph are the relevant features 

and the edges represent the correlation between two features. 

In order to compute the correlation among two features (fi,fj 

ϵ FS), the correlation SU(fi,fj) is calculated. This SU(fi,fj) is 

calculated for all possible feature pair fi and fj where i ≠ j. 

Therefore, the value of each edge is the correlation value, 

and the value of each node in the graph is the value of SU 

calculated above for each feature with its class label. 

This results in a weighted complete graph with h(h−1)/2 

edges (where h is the number of nodes), and the correlation 

value is expressed as the weights on the edges. In the case of 

high-dimensional data where the numbers of vertices are 

very large, the complete graph is very dense with a large 

number of vertices and edges. For further work on this 

dataset to be feasible, the number of edges needs to be 

reduced. An MST is constructed to make the graph somewhat 

less dense. The edges are removed using Kruskal’s algorithm. 

In order to remove the redundant features from the spanning 

tree, only features with an edge weight less than the 

correlation of both features with the class are added to the 

cluster. The algorithm is described in Fig. 3. 

 
 
V.  EMPIRICAL STUDY 

 

In this section, we evaluate the performance of the 

algorithm described above by testing it on eight datasets of 

varying dimensionality, ranging from low-dimension 

datasets to large-dimension datasets. The ModifiedFAST 

algorithm was evaluated in terms of the percentage of 

selected features, runtime and classification accuracy. 

Table 1. Summary of data sets 

Dataset 
No. of 

instances 

No. of 

features 

No. of 

classes 
Domain 

WarpPIE10p 210 750 10 Image, face 

WarpAR10P 130 510 10 Image, face 

Chess 3196 36 2 Text 

Coil2000 134 86 2 Text 

Email word 

subject 
64 242 2 Text 

tox-171 100 256 4 Microarray 

Pix10P 100 256 10 Image, face 

orlaws10p 100 256 10 Image, face 

 

 

A. Data Set 
 

In order to validate the proposed algorithm, eight samples 

of real datasets with different dimensionality were chosen 

from the UCI machine learning repository and from 

featureselection.asu.edu/datasets. The datasets contain text, 

microarray, or image data. The details of these datasets are 

described in Table 1. 

 
B. Performance Parameters 

 

Many feature selection algorithms are available in the 

literature. Some algorithms perform better than others with 

regard to individual metrics, but may perform less well from 

the viewpoint of other metrics. 

Some classical methods used as performance metrics are: 

1) The number of selected features: This is the main task 

of any feature selection algorithm. An algorithm that 

removes all irrelevant and redundant features may result 

in a lower number of selected features in cases of high-

dimensional data. Two algorithms can be compared on 

this basis. 

2) Runtime: A main task of any computer application 

today is to reduce the required runtime. An algorithm 

that gives the best feature subset in the least time is 

preferred. If classification accuracy of two algorithms 

does not significantly vary, then this parameter can be 

used to compare the algorithms. The value of this 

parameter depends upon the total number of features 

available in the dataset. It also depends upon the 

machine on which processing is taking place. 

3) Classification accuracy: This metric assesses the 

performance of a feature selection algorithm on the 

given classification algorithm. Classifier accuracy refers 

to the ability of a classifier to correctly predict the class 

label of unseen data. If the accuracy of any classifier 

increases after applying feature selection, then that 

feature selection algorithm is acceptable. 
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For each dataset, we obtained the number of features after 

running the algorithm. Different feature selection algorithms 

were compared on the basis of the percentage of selected 

features. We then applied the naïve Bayes, the tree-based 

C4.5, and the rule based IB1 classification algorithms on 

each newly generated feature subset to calculate the 

classification accuracy by 10-fold cross validation. 

The main target of developing a feature subset for the 

classification task is to improve the performance of 

classification algorithms. Accuracy is also the main metric for 

measuring classification performance. However, the number 

of selected features is also important in some cases. 

We have developed a new performance evaluation 

measure resulting in a formula that integrates the number of 

features selected with the classification accuracy of an 

algorithm. 

Δ denotes the classification accuracy/number of feature 

selected. The number of features selected is a negative metric 

and the classification accuracy is a positive metric, such that 

values of Δ > 1 indicate a better algorithm. 

 

C. Statistical Significance Validation 
 

Performance metrics are necessary to make observations 

about different classifiers. The purpose of statistical 

significance testing is to collect evidence representing the 

general behaviour of the classifiers from the results obtained 

by an evaluation metric. One of the tests used is the 

Friedman test. 

The Friedman test [28] is a non-parametric approach. It 

can be used as a measure to compare the rank of k 

algorithms over d datasets. It provides a test of significance 

for data with ranks <6. If the value of k is >5, then the level 

of significance or the rank of the algorithm can be seen in 

the chi-square distribution table. The data are treated as the 

matrix {xij}dxk, where d is the number of datasets (called 

blocks) and k is the number of columns that have different 

algorithms. 

 

M = 
𝟏𝟐

𝒅𝒌(𝒌+𝟏)
𝑿 ∑ 𝑹𝒋

𝟐 –  𝟑𝒅(𝒌 + 𝟏).   (7) 

 

The null hypothesis of the Friedman test considered here 

is that there is no difference between the feature selection 

algorithms based on the percentage of selected features. The 

decision rule then states that the null hypothesis should be 

rejected if M is greater than the critical value. If this 

hypothesis gets rejected, then a posthoc test is needed to 

compare the performance of the algorithms. The Nemenyi 

test or the Bonferroni-Dunn test can be used as the posthoc 

test. 

 

 

 

VI. RESULTS AND ANALYSIS 
 

We used several threshold values in our experiment. 

Different feature selection algorithms, such as FCBF [12], 

Relief, CFS [11], and FAST [13] have likewise used 

different threshold values to evaluate their results. Yu and 

Liu [12] have suggested the relevant threshold value on SU 

to be the ˪m/log m˩-th ranked feature for each dataset. In 

FAST [13] feature selection, features are ranked by using 

the (√m * lg m)-th ranked feature as the threshold of the SU 

value, where m is the number of features. Table 2 shows the 

relevant features found after implementing the filter feature 

selection algorithm described in Fig. 2 with a range of 

threshold values. 

The algorithm given in Fig. 3 was applied on all the 

features found in Table 2 for each dataset. The final feature 

subset was recorded. Table 3 shows the different 

percentages corresponding to different thresholds. In order 

to choose the best thresholds for this algorithm can work, 

the percentage of selected features, runtime, and 

classification accuracy values for each threshold value were 

observed. Tables 4–6 record the classification accuracy 

along with the calculations of the proposed performance 

parameter Δ for each dataset, using the naïve Bayes 

classifier, the tree-based C4.5 classifier, and the instance-

based IB1 classifier, respectively. 

 

 

 

Fig. 4. Comparison of five feature selection algorithms based on the 

percentage of features selected. 

 

 
Fig. 5. Ranking of feature selection algorithms based on the Nemenyi 

test. 
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Tables 2–6 prove that different threshold values result in 

different numbers of features selected for the same dataset. 

In Tables 4–6, all values for each threshold have not been 

displayed due to space considerations. We observed 

experimentally that a threshold value of 0.2 yields optimal 

results. We also found that after feature selection, all three 

classifiers result in good classification accuracy for text 

datasets. 

The datasets were categorized as low-dimension (D < 200) 

and large-dimension (D > 200). Tables 7 and 8 compare the 

results obtained with a threshold value of 0.2 using this 

algorithm with the results obtained using other existing 

feature selection algorithms. 

When different algorithms are evaluated in terms of the 

percentage of features selected, we conclude that the 

ModifiedFAST feature selection algorithm obtains the least 

percentage of features in most of the datasets. This is shown 

in Fig. 4. ModifiedFAST yielded better results than other 

algorit hms in many of the datasets. The FAST algorithm 

took second place, followed by FCBF, CFS, and ReliefF. 

ModifiedFAST had the highest performance in the Chess, 

coil2000, WarpPIE10p, and WarpAR10P datasets. The 

Table 2. The number of relevant features found using different threshold values 

Threshold 

dataset 
m/logm √m*logm 0 0.01 0.2 0.4 0.6 0.8 1 m1/3*logm √m/ logm 

Chess 13 27 36 14 1 0 0 0 0 31 33 

Coil2000 18 45 73 51 2 0 0 0 0 56 65 

WarpAR10P 322 449 510 510 510 499 0 0 0 489 502 

WarpPIE10p 464 652 750 750 750 714 0 0 0 714 737 

Email word 

subject 
0 0 242 231 1 0 0 0 0 14 124 

Orlaws10P 149 218 256 256 256 256 146 0 0 241 250 

Pixraw10P 150 218 256 256 256 256 256 126 0 241 250 

Tox-171 0 0 256 256 256 0 0 0 0 0 21 

 

Table 3. Percentage of selected features using different threshold values 

Threshold 

dataset 
m/logm √m*logm 0 0.01 0.2 0.4 0.6 0.8 1 m1/3*logm √m/ logm 

Chess 19.44 47.22 94.44 33.33 2.77 0 0 0 0 77.77 69.44 

WarpPIE10p 0.041 0.041 0.041 0.041 0.041 0.041 0 0 0 0.041 0.041 

Coil2000 17.44 46.51 53.48 52.32 1.162 0 0 0 0 17.44 46.51 

WarpAR10P 0.041 0.041 0.041 0.041 0.041 0.041 0 0 0 0.041 0.041 

Email word 

subject 
0 0 8.26 4.13 0.413 0 0 0 0 4.545 24.38 

Orlaws10P 0.390 0.39 0.39 0.390 0.390 0.390 0.39 0 0 0.390 0.390 

Pixraw10P 26.56 52.343 100 64.45 64.45 64.45 64.45 26.95 0 52.34 94.53 

Tox-171 0 0 0.390 0.390 0.390 0 0 0 0 0 0.390 

 

Table 4. Accuracy calculated using the naïve Bayes classifier 

Threshold 

dataset 
Domain m/logm √m*logm 0.01 0.2 

Δ 

(performance metric) 

Chess Text 82.41 84.44 86.60 86.60 2.59 

Coil2000 Text 89.55 89.55 89.55 89.55 1.711 

Email word subject Text 0 0 85.93 85.93 20.8 

Average (text)  85.98 85.98 87.36 87.36 7.6 

WarpPIE1p Image 22.85 22.85 22.85 22.85 557.31 

Orlaws10P Image 62 62 62 62 158.97 

Pixraw10P Image 93 93 92 92 1.427 

WarpAR1P Image 20.76 21.53 21.53 21.53 525.1 

Average (image)  49.65 49.845 49.595 49.595 310.7 

Tox-171 Microarray 0 0 37 42 94.87 
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proportion of selected features was improved in all these 

datasets. This shows that the optimal threshold value of 0.2 

greatly improves the performance of the classification 

algorithms. In order to further rank the algorithms based on 

statistical significance, the Friedman test is used. It is used 

to compare k algorithms over d datasets by ranking the 

algorithms. The value of M given in Eq. (7) is calculated 

and compared with the critical value at 𝛼= 1%. 

The test results falsified the null hypothesis, showing that 

all feature selection algorithms performed differently in 

terms of the percentage of selected features. 

We then applied the Nemenyi test as a posthoc test [29] to 

explore the actual range by which pairs of algorithms 

differed from each other. As stated by the Nemenyi test, two 

classifiers are found to perform differently if the 

corresponding average ranks (Rx-Ry, where Rx and Ry are the 

average ranks of algorithms x and y, respectively) differ by 

at least the critical difference (CD). 

 

CD = 𝒒∝√
𝑘(𝑘+1)

6𝑁
 .             (8) 

 

In Eq. (8), k is the number of algorithms, N is number of 

datasets, and 𝒒∝ is based on the Studentized range statistic 

divided by √2. Fig. 5 shows the results for these five 

algorithms with ∝ = 0.1 on seven datasets. The CD value is 

compared with the mean rank of each algorithm using 

ModifiedFAST. Overall, we found that the rank of 

ModifiedFAST was slightly higher than FAST, and much 

higher than other algorithms. 

 

 

Table 7. Comparison of feature selection algorithms for low-

dimensional datasets 

Dataset 
Feature selection 

algorithm 

Percentage of 

selected 

features 

Runtime 

(ms) 

Chess ReliefF 62.16 12660 

 CFS 10.81 352 

 FCBF 21.62 60 

 FAST 16.22 105 

 ModifiedFAST 2.7 5.4 

Coil2000 ReliefF 50.00 304162 

 CFS 11.63 1483 

 FCBF 8.14 875 

 FAST 3.49 866 

 ModifiedFAST 1.16 1.25 

Table 5. Accuracy calculated using the C4.5 classifier 

Threshold 

Dataset 
Domain m/logm √m*logm 0.01 0.2 

Δ  

(performance metric) 

Chess Text 94.08 94.55 94.08 94.08 2.82 

Coil2000 Text 95.52 95.52 95.52 95.52 1.82 

Email word subject Text 0 0 85.93 85.93 20.8 

Average (text)  94.8 94.8 91.84 91.84 8.48 

WarpPIE1p Image 26.66 26.66 26.66 26.66 650.2 

Orlaws10P Image 59 59 59 59 151.2 

Pixraw10P Image 92 93 84 84 1.303 

WarpAR1P Image 19.23 21.53 21.53 21.5 525.1 

Average (image)  49.22 50.04 47.79 47.79 331.98 

Tox-171 Microarray 0 0 35 41 89.74 

 

Table 6. Accuracy calculated using the IB1 classifier 

Threshold 

Dataset 
Domain m/logm √m*logm 0.01 0.2 

Δ 

(performance metric) 

Chess Text 93.17 92.45 91.99 91.99 2.75 

Coil2000 Text 94.02 93.28 94.02 94.02 1.79 

Email word subject Text 0 0 71.87 71.87 17.40 

Average (text)  93.595 93.595 85.96 85.96 7.31 

WarpPIE1p Image 20 20 20 20 487.8 

Orlaws10P Image 51 51 51 51 130.76 

Pixraw10P Image 98 98 98 98 1.52 

WarpAR1P Image 21.53 25.38 25.38 25.38 619.02 

Average (image)  47.63 48.59 48.59 48.59 309.7 

Tox-171 Microarray 0 0 47 43 120.51 
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Table 8. Comparison of feature selection algorithms for large- 

dimensional datasets 

Dataset 
Feature selection 

algorithm 

Proportion of 

selected features 

ORL10P  ReliefF 99.97 

 CFS 2.76 

 FCBF 2.61 

 FAST 0.30 

 ModifiedFAST 0.39 

WarpPIE10p ReliefF 91.00 

 CFS 2.52 

 FCBF 1.98 

 FAST 1.07 

 ModifiedFAST 0.133 

WarpAR10P  ReliefF 62.89 

 CFS 2.12 

 FCBF 1.04 

 FAST 0.21 

 ModifiedFAST 0.19 

PIX10P ReliefF 100.00 

 CFS 2.35 

 FCBF 3.04 

 FAST 0.15 

 ModifiedFAST 64.45 

TOX-171 ReliefF 64.60 

 CFS 2.09 

 FCBF 1.41 

 FAST 0.28 

 ModifiedFAST 0.39 

 
 

VII. CONCLUSION 
 
This paper finds an optimal threshold value that can be 

used for most feature selection algorithms, resulting in good 

subsets. The thresholds given by earlier feature selection 

algorithms are not optimal and need to be changed. We 

observed that different threshold values can result in 

different numbers of features selected and a different level 

of accuracy due to changes in the number of selected 

features. The best threshold found for the proposed 

algorithm was 0.2. 

We have compared the performance of the Modified 

FAST algorithm, based on the percentage of features 

selected and classification accuracy, with the values given 

by other feature selection algorithms, such as FAST, ReliefF, 

CFS, and FCBF. For text datasets, we found that the 

proposed algorithm resulted in improved classification 

accuracy than it was before the algorithm was applied for all 

the classifiers. On the basis of the proposed performance 

parameter Δ, we observed that all values were positive for 

all three classifiers, demonstrating that ModifiedFAST is a 

better algorithm as assessed by a combination of 

classification accuracy and the number of selected features. 
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