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I. INTRODUCTION 
 
Artificial neural networks (ANNs) are nonlinear mapping 

structures based on the function of the human brain. They 
are powerful tools for modeling, particularly because the 
underlying data relationship is unknown. The key element 
of this paradigm is the novel structure of the information 
processing system. It is composed of a large number of 
highly interconnected processing elements (neurons) working 
in unison to solve specific problems. An ANN is configured 
for a specific application, through a learning process. 
Learning in a biological system involves adjustment to the 
synaptic connections that exist between the neurons. ANNs 

can identify and learn the correlated patterns between input 
datasets and the corresponding target values. After training, 
ANNs can be used to predict the input data. ANNs imitate 
the learning process of the human brain and can process 
problems involving nonlinear and complex data even if the 
data are imprecise and noisy. Thus, they are ideal for the 
modeling of complex and often nonlinear data. ANNs have 
great capacity for predictive modeling; i.e., all the characters 
describing the unknown situation can be presented to the 
trained ANNs, and then, the prediction of systems is 
guaranteed. ANNs are capable of performing many 
classification, learning, and function approximation tasks, 
yet in practice, they sometimes deliver only marginal 
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Abstract 
Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a 
set of input–output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the 
interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid 
algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge 
rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In 
contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, 
the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle 
swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, 
to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of 
the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are 
compared using two different datasets, and the results are simulated. 
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performance. Inappropriate topology selection and weight 
training are frequently blamed for this. Neural networks are 
adjusted, or trained, such that a particular input leads to a 
specific target output. The ANN weights are adjusted on the 
basis of a comparison of the output and the target, until the 
network output matches the target. Typically, many such 
input/target pairs are needed to train a network. Increasing 
the number of hidden layer neurons helps to improve the 
network performance, yet many problems can be solved 
with very few neurons if only the network takes its optimal 
configuration. Unfortunately, the inherent nonlinearity of an 
ANN [1] results in the existence of many suboptimal 
networks, and a considerable majority of training algorithms 
converge to these suboptimal configurations. The problem 
of multiple local minima in neural networks has been widely 
addressed. The proposed solutions include multiple starts 
from randomly chosen initial points, simulated annealing, 
random perturbation, diffusion techniques, and evolutionary 
computing. Most of these methods are probabilistic in 
nature: They can find the globally optimal solution with a 
certain probability, which depends on the number of 
iterations of the algorithm. In this study, an ANN is trained 
using the proposed hybrid approach. The rest of this paper is 
organized as follows: Section II presents a brief introduction 
to different existing ANN learning algorithms with their 
pros and cons. The proposed hybrid DPSO-BP approach is 
introduced in Section III. Simulation results and comparisons 
are provided in Section IV to demonstrate the effectiveness 
and potential of the proposed hybrid algorithm. Finally, 
several conclusions are presented in Section V. 
 
 
II. NEURAL NETWORK LEARNING ALGORITHMS 
 

Training neural networks is a complex task of great 
importance in the field of supervised learning. ANNs have 
been shown to have the potential to perform well for 
classification problems in many different environments, 
including business, science, and engineering. A majority of 
the studies on this topic rely on a gradient algorithm, 
typically a variation of backpropagation (BP), to obtain the 
weights of the model. Various learning techniques are 
introduced to optimize the weights of an ANN. Although 
the limitations of gradient search techniques applied to 
complex nonlinear optimization problems, such as the ANN, 
are well known, many researchers still choose to use these 
methods for network optimization. ANNs can identify and 
learn the correlated patterns between input datasets and the 
corresponding target values. After training, ANNs can be 
used to predict input data. ANNs imitate the learning 
process of the human brain and can process problems 
involving nonlinear and complex data even if the data are 
imprecise and noisy. Different learning algorithms are 

described below. 
 
A. BP Algorithm 
 

In an ANN, activation functions of the output units 
become differentiable functions of the input variables and of 
the weights and biases, as shown in Fig. 1. If we define an 
error function (E), such as a sum of squares function, which 
is a differentiable function of the network outputs, then this 
error function is itself a differentiable function of the 
weights. We can therefore evaluate the derivatives of the 
error with respect to the weights, and these derivatives can 
then be used to find the weight values that minimize the 
error function, by using any of the learning algorithms such 
as the BP, conjugate gradient, quasi-Newton, and Levenberg-
Marquardt (LM) algorithms [2]. From the perspective of 
mathematical programming, supervised batch training of a 
neural network is a classical nonlinear optimization problem: 
find the minimum of the error function given some set of 
training data. Traditionally, this is accomplished by a 
suitable local descent technique, such as BP. The 
independent variables are the weights w, and the objective 
function is usually the sum of squared errors (although other 
measures of error are also used). The objective function is 
formulated mathematically in Eq. (1). 
 , ,  .  

(1) 
 
Here, f denotes the transfer function; wo, the output weights; 
wh, the hidden layer weights; xk, the input training data; yk, 
the desired output; and zk, the activations of hidden neurons. 
Despite its popularity, BP has been widely criticized for its 
inefficiency, and more advanced minimization techniques, 
such as conjugate gradient and LM methods, are available. 
Yet, all these techniques converge to the closest local 
minimum of the error function, which is very unlikely to be 
the global one. As a consequence, a network trained with a 
local algorithm may exhibit marginal performance. In this 
connection, the primitive BP may result in a better solution 
than more sophisticated methods, because its disadvantages 

 
 

 
Fig. 1. Artificial neural network neuron. 
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5. Determine the current best fitness value in the entire 
population. If the current best fitness value is better than 
pg, assign the current best fitness value to pg. 

6. For each particle, update the particle velocity. 
7. Update the particle position. 
8. Repeat Steps 2–7 until a stop criterion is satisfied or a 

predefined number of iterations are completed. 
 
C. PSO-BP Algorithm 

 
PSO-BP is an optimization algorithm combining PSO 

with BP [7, 8].The PSO algorithm [9] is a global algorithm 
that has a strong ability to find the global optimistic result. 
However, this algorithm has a disadvantage that the search 
around the global optimum is very slow. In contrast, the BP 
algorithm has a strong ability to find the local optimistic 
result, but its ability to find the global optimistic result is 
weak. The fundamental idea for this hybrid algorithm is that 
at the beginning stage of searching for the optimum, PSO 
[10] is employed to accelerate the training speed. When the 
fitness function value has not changed for some generations, 
or the change in value is smaller than a predefined number, 
the search process is switched to the gradient descent search 
according to this heuristic knowledge. The PSO-BP [11] 
algorithm’s search process also starts by initializing a group 
of random particles. First, all the particles are updated 
according to Eq. (4). 

 1 ∗ ∗ ∗ ∗ ∗ , 1 1  1 	 	 				1 	 	 ,	  (4) 
 
where c1 and c2 are the acceleration constants with positive 
values and rand() is a random number between 0 and 1. 
Further, w is the inertia weight [12], until a new-generation 
set of particles is generated; then, these new particles are 
used to search the global best position in the solution space. 
Finally, the BP algorithm is used to search around the global 
optimum. Thus, this hybrid algorithm may find an optimum 
more quickly. 

The procedure for this PSO-BP algorithm can be 
summarized as follows: 
1. Initialize the positions and velocities of a group of 

particles randomly in the range of [0, 1]. 
2. Evaluate each initialized particle’s fitness value, and set 

Pb as the positions of the current particles and Pg as the 
best position of the initialized particles. 

3. If the maximal iterative generations are arrived, go to 
Step 8; else, go to Step 4. 

4. The best particle of the current particles is stored. The 
positions and velocities of all the particles are updated 

according to Eq. (4), and then, a group of new particles 
is generated. If a new particle flies beyond the boundary 
[Xmin, Xmax], the new position will be set as Xmin or 
Xmax; if a new velocity is beyond the boundary [Vmin, 
Vmax], the new velocity will be set as Vmin or Vmax. 

5. Evaluate each new particle’s fitness value, and replace 
the worst particle by the stored best particle. If the i-th 
particle’s new position is better than Pib, Pib is set as the 
new position of the i-th particle. If the best position of 
all new particles is better than Pg, then Pg is updated. 

6. Reduce the inertia weights w according to the selection 
strategy. 

7. If the current Pg is unchanged for ten generations, then 
go to Step 8; else, go to Step 3. 

8. Use the BP algorithm to search around Pg for some 
epochs. If the search result is better than Pg, output the 
current search result; else, output Pg. This is only the 
first type of condition; we can also use Steps 9–11 to 
replace the above Steps 6–8, and then, obtain the second 
type of condition. 

9. Use the BP algorithm to search around Pg for some 
generations. If the search result is better than Pg, Pg is 
set for the current search result. Else, compare it with 
the worst particle of the current particles; if it is better 
than the best particle, use it to replace the worst particle; 
else, go to Step 7. 

10. Reduce the inertia weights w. 
11. Output the global optimum Pg. The parameter w in the 

PSO-BP algorithm also reduces gradually as the iterative 
generation increases. 

 
This algorithm has a parameter called the learning rate 

[13] that controls the convergence of the algorithm to an 
optimal local solution; however, obtaining a good value for 
this parameter is difficult. 
 

 

III. PROPOSED ALGORITHM (DYNAMIC PSO-BP) 
 

PSO combined with BP gives good result in learning but 
due to some cons of basic PSO, we modified it with some 
dynamic constraints where during the learning process of 
the ANN objective space can be compressed or expanded. In 
PSO, each particle should be kept in a confined space 
corresponding to the parameter limitations. This decreases 
the diversity of the particle. If the global best particle does 
not change its gbest position after one iteration, then 
stagnation occurs in the population. Then, the solution may 
be a local optimal solution. That is, due to its stochastic 
behavior, it is not possible to find a way to the global 
optimum. The drawback of PSO is that the swarm may 
converge prematurely. The underlying principle behind this 
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That is, when the best fitness value in the history of all 
particles does not change for some generations (i.e., ten 
generations), the search process is transferred to the gradient 
descent search. When the best fitness does not change for 
some generations, all the particles may lose the ability to 
find a better solution; at this time, a gradient descent search 
can be used to obtain better results. If the rank values of a 
current swarm and its recorded swarm leader have the same 
rank value, then the pure Pareto ranking method is applied 
to both the swarm leaders. If the current swarm dominates 
the recorded swarm leader, then the current one will replace 
the recorded one. If both do not dominate each other, one of 
them is randomly chosen to update the local best archive of 
swarms. The new velocity and position are given in Eq. (5). 

 , 1 , , ,  

, , 1  

, , 1 , ,  , 1 , , 1  ,       (5) 
 
where , (t) is the j-dimensional velocity of swarm member 
i of swarm n in iteration t; , (t), the j-dimensional position 
of swarm member i of swarm n in iteration t; , (t), the j-
dimensional personal best (pbest) position of the swarm 
members i of swarm n in iteration t; , (t), the j-
dimensional global best (gbest) selected from the archive in 
iteration t; , (t), the j-dimensional local best position of 
the swarm leader of swarm n in iteration t; and , (t) (with 
a superscript ), the j-dimensional local best position of any 
swarm leaders other than their own swarm leader in iteration 
t. Further, r1, r2, and r3 are random numbers within [0, 1] 
that are regenerated every time they occur; w is the inertial 
weight that varies between 0.1 and 0.5 at every iteration; 
and c1, c2, and c3 are the acceleration constants. Each of the 
acceleration constants is randomly varied between 1.5 and 2 
to place different emphasis on the components. When the 
objective space compression strategy [14] is applied several 
times in the early iterations, there is a possibility that the 
objective space is overly compressed and can cause the 
boundaries of the objective to not cover the true Pareto front. 
 
 
IV. EXPERIMENTAL RESULT AND DISCUSSION 
 
A. Standard Datasets 
 

We choose two different datasets of small and large 
dimensions for the experiment. It is assumed that the 
proposed hybrid learning algorithm works in both these 
environments. The datasets are the e-learning dataset 
(number of patterns = 90) and the thyroid dataset (number 
of patterns = 7,200). 

B. Results and Algorithm Settings 
 

In the following experiments, two datasets are chosen for 
comparing the performances of the BP, PSO, PSO-BP, and 
DPSO-BP algorithms in evolving the weights of the ANN. 
Suppose that every weight in the network was initially set in 
the range of [-50, 50], and all thresholds in the network were 
0 s. Further, suppose that every initial particle was a set of 
weights generated at random in the range of [0, 1]. Let the 
initial inertial weight w be 1.8, the acceleration constants, 
both c1 and c2 be 2.0, r1 and r2 be two random numbers in 
the range of [0, 1]. The maximum velocity was assumed as 
10 and the minimum velocity as -10. The initial velocities of 
the initial particles were generated randomly in the range of 
[0, 1]. After each iteration, if the calculated velocity was 
larger or smaller than the maximum velocity or the 
minimum velocity, velocity would be reset to 10 or -10. The 
population size was a variable that was set according to the 
dataset. In this example, we trained an ANN with the 
structure of 1–S1–1. The training algorithms used were the 
DPSO-BP, DPSO, and BP algorithms. Assuming that S1 = 3, 
4, 5, 6, 7, x was obtained from the range of [0, p] and the 
training set was obtained at an identical sampling interval of 
0.03 from [0, p]; further, the test set was obtained at an 
identical sampling interval of 0.1 from 0.02 to p. For every 
fixed hidden unit number, we ran the training algorithms for 
each dataset. We set the maximum number of training 
iterations at 7,000 times for the algorithms.  

Algorithms for training ANNs were compared. Tests were 
conducted on gradient descent algorithms such as BP, and 
population-based heuristics such as PSO. Experimental results 
showed that DPSO–BP outperformed all other algorithms in 
training neural networks. In this study, the DPSO–BP 
algorithm, which is a new, simple, and robust optimization 
algorithm, was used to train the standard and e-learning 
datasets for classification purposes. Training procedures 
involved the selection of the optimal values of the parameters, 
such as the weights between the hidden layer and the output 
layer, spread parameters of the hidden layer base function, 

 
 

 
Fig. 5. Recognition rate of PSO, PSO-BP, and DPSO-BP. PSO: particle 
swarm optimization, BP: backpropagation, DPSO: dynamic PSO. 



Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization–Backpropagation: Empirical Evaluation and Comparison 

http://jicce.org 129

center vectors of the hidden layer, and bias parameters of 
the neurons of the output layer.  

PSO and PSO-BP algorithms showed better performance 
than derivative-based methods; however, these algorithms 
had the disadvantage of a slow convergence rate. Trapping a 
local minimum was a disadvantage for these algorithms. 
When the learning performances were compared, exper-
imental results showed that the performance of the proposed 
algorithm was better than that of the others.  

The success of the classification results of the test 
problems was superior and correlated with the results of 
many research [9, 10, 12]. In real-time applications, the 
number of neurons might affect the time complexity of the 
system. The results of the e-learning classification problem 
were reasonable and might help training algorithms in other 
e-learning applications. 

Fig. 5 shows the recognition rate of different algorithms 
while training an ANN in the thyroid dataset. Here, the red 
line denotes the proposed algorithm, while the blue and 
black lines denote the results of PSO and PSO-BP, 
respectively. It can be inferred from Fig. 5 that PSO-BP has 
a better recognition rate than PSO. Apparently, the PSO 
algorithm has a very low recognition rate while learning the 
ANN, but when it is combined with the BP algorithm, the 
mean recognition rate increases, as shown in Fig. 5. How-
ever, the proposed algorithm again increases the rate of 
recognition due to its dynamic nature. This shows that the 
DPSO-BP algorithm is more stable, while in the training 
process, the DPSO-BP algorithm uses less CPU time than 
the PSO-BP algorithm and the PSO algorithm. 

Fig. 6 illustrates the curves of the training errors and the 
testing errors for the three training algorithms using the e-
learning dataset. Fig. 6(a), (c), and (e) show the training error 
curves of the PSO, PSO-BP, and DPSO-BPA algorithms, 
respectively. Fig. 6(b), (d), and (f) illustrate the testing error 
curves of the PSO, PSO-BP, and DPSO-BPA algorithms, 
respectively. When the value of x is smaller, there are fewer 
training samples and testing samples. Further, it can be seen 
from Fig. 6 that the DPSO algorithm has better training and 
testing errors than the BP algorithm. When the value of x is 
larger, there are more training samples and testing samples. 
Moreover, it can be seen that the BP algorithm has better 
training and testing errors. The hybrid algorithm combines 
the advantages of the DPSO algorithm and the BP algorithm; 
therefore, it can be observed that the DPSO-BP algorithm 
has better training and testing errors. 

 
 

V. CONCLUSIONS 
 
In this paper, a hybrid DPSO-BP algorithm is proposed, 

which combines the PSO algorithm’s strong ability of global 
learning and the BP algorithm’s strong ability of local 
learning. Hence, we can obtain better training results by 
using this hybrid algorithm. Some heuristic knowledge is 
adapted to transit from the DPSO algorithm search to the BP 
algorithm search. That is, when the best fitness value in the 
history of all particles does not change for some generations 
(i.e., ten generations), the search process is transferred to the 
gradient descent search. The heuristic way is used to avoid 

 

 

Fig. 6. Training and testing error curves for e-learning dataset using PSO, PSO-BP, and DPSO-BP. PSO: particle swarm optimization, BP: back-
propagation, DPSO: dynamic PSO. 
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wasting too much CPU time on a vain search (as used in 
the other compared algorithms); therefore, the training 
efficiency of the DPSO-BP algorithm is improved 
considerably. A different selection strategy is introduced for 
updating the inertial weight w. In the initial searching stage, 
the searching inertial weight is reduced rapidly in order to 
rapidly achieve the global optima. Then, around the global 
optimum, we reduce the inertial weight more smoothly by 
using BP so that a higher accuracy can be achieved. 

From the conducted experiments, we conclude that for the 
same goal, the DPSO-BP algorithm uses less CPU time and 
provides higher training accuracy than the PSO algorithm 
and the BP algorithm. A comparative study shows that the 
performance of the variant is competitive in comparison 
with the selected algorithms on standard benchmark 
problems. It is concluded that the DPSO-BP algorithm is 
more stable than the BP algorithm and the PSO algorithm. 
In future research works, we shall focus on how to apply 
this hybrid PSO algorithm to solve more practical problems. 
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