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Abstract

Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a
set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the
interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid
algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge
rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In
contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time,
the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle
swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm,
to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of
the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are
compared using two different datasets, and the results are simulated.

Index Terms: ANN, BP algorithm, DPSO, Global optimization, Gradient descent technique
I. INTRODUCTION can identify and learn the correlated patterns between input

datasets and the corresponding target values. After training,
Artificial neural networks (ANNs) are nonlinear mapping ANNSs can be used to predict the input data. ANNs imitate

structures based on the function of the human brain. They the learning process of the human brain and can process
are powerful tools for modeling, particularly because the problems involving nonlinear and complex data even if the
underlying data relationship is unknown. The key element data are imprecise and noisy. Thus, they are ideal for the
of this paradigm is the novel structure of the information modeling of complex and often nonlinear data. ANNs have
processing system. It is composed of a large number of great capacity for predictive modeling; i.e., all the characters
highly interconnected processing elements (neurons) working describing the unknown situation can be presented to the
in unison to solve specific problems. An ANN is configured trained ANNSs, and then, the prediction of systems is
for a specific application, through a learning process. guaranteed. ANNs are capable of performing many
Learning in a biological system involves adjustment to the classification, learning, and function approximation tasks,
synaptic connections that exist between the neurons. ANNs yet in practice, they sometimes deliver only marginal
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performance. Inappropriate topology selection and weight
training are frequently blamed for this. Neural networks are
adjusted, or trained, such that a particular input leads to a
specific target output. The ANN weights are adjusted on the
basis of a comparison of the output and the target, until the
network output matches the target. Typically, many such
input/target pairs are needed to train a network. Increasing
the number of hidden layer neurons helps to improve the
network performance, yet many problems can be solved
with very few neurons if only the network takes its optimal
configuration. Unfortunately, the inherent nonlinearity of an
ANN [1] results in the existence of many suboptimal
networks, and a considerable majority of training algorithms
converge to these suboptimal configurations. The problem
of multiple local minima in neural networks has been widely
addressed. The proposed solutions include multiple starts
from randomly chosen initial points, simulated annealing,
random perturbation, diffusion techniques, and evolutionary
computing. Most of these methods are probabilistic in
nature: They can find the globally optimal solution with a
certain probability, which depends on the number of
iterations of the algorithm. In this study, an ANN is trained
using the proposed hybrid approach. The rest of this paper is
organized as follows: Section II presents a brief introduction
to different existing ANN learning algorithms with their
pros and cons. The proposed hybrid DPSO-BP approach is
introduced in Section III. Simulation results and comparisons
are provided in Section IV to demonstrate the effectiveness
and potential of the proposed hybrid algorithm. Finally,
several conclusions are presented in Section V.

Il. NEURAL NETWORK LEARNING ALGORITHMS

Training neural networks is a complex task of great
importance in the field of supervised learning. ANNs have
been shown to have the potential to perform well for
classification problems in many different environments,
including business, science, and engineering. A majority of
the studies on this topic rely on a gradient algorithm,
typically a variation of backpropagation (BP), to obtain the
weights of the model. Various learning techniques are
introduced to optimize the weights of an ANN. Although
the limitations of gradient search techniques applied to
complex nonlinear optimization problems, such as the ANN,
are well known, many researchers still choose to use these
methods for network optimization. ANNs can identify and
learn the correlated patterns between input datasets and the
corresponding target values. After training, ANNs can be
used to predict input data. ANNs imitate the learning
process of the human brain and can process problems
involving nonlinear and complex data even if the data are
imprecise and noisy. Different learning algorithms are
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described below.
A. BP Algorithm

In an ANN, activation functions of the output units
become differentiable functions of the input variables and of
the weights and biases, as shown in Fig. 1. If we define an
error function (E), such as a sum of squares function, which
is a differentiable function of the network outputs, then this
error function is itself a differentiable function of the
weights. We can therefore evaluate the derivatives of the
error with respect to the weights, and these derivatives can
then be used to find the weight values that minimize the
error function, by using any of the learning algorithms such
as the BP, conjugate gradient, quasi-Newton, and Levenberg-
Marquardt (LM) algorithms [2]. From the perspective of
mathematical programming, supervised batch training of a
neural network is a classical nonlinear optimization problem:
find the minimum of the error function given some set of
training data. Traditionally, this is accomplished by a
suitable local descent technique, such as BP. The
independent variables are the weights w, and the objective
function is usually the sum of squared errors (although other
measures of error are also used). The objective function is
formulated mathematically in Eq. (1).

K
M G W) = D (Fwd 2i) = )% wherez, = f(wlxi)

k=1
O

Here, f denotes the transfer function; w,, the output weights;
w;, the hidden layer weights; x;, the input training data; y;,
the desired output; and z,, the activations of hidden neurons.
Despite its popularity, BP has been widely criticized for its
inefficiency, and more advanced minimization techniques,
such as conjugate gradient and LM methods, are available.
Yet, all these techniques converge to the closest local
minimum of the error function, which is very unlikely to be
the global one. As a consequence, a network trained with a
local algorithm may exhibit marginal performance. In this
connection, the primitive BP may result in a better solution
than more sophisticated methods, because its disadvantages

in

Fig. 1. Artificial neural network neuron.
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While not stop —criteria  do While not stop —criteria  do
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Fig. 2. Pseudo-code of the backpropagation algorithm.

turn into the benefits of avoiding some shallow local
minima. The problem of many local minima has been
widely addressed in the past. It was shown that training
even a simple perceptron with a nonlinear transfer function
may result in multiple minima. The remedies include
starting the local descent from several random points, using

tabu search, simulated annealing, and genetic algorithms [3].

The new stochastic optimization algorithms significantly
outperform the local methods, yet they do not provide any
guarantee that their solution is the global minimum indeed.
Moreover, the number of local minima of the error function
grows exponentially with the number of neurons, and the
likelihood that these stochastic methods will find the global
minimum is not very high.

The BP algorithm is a classical domain-dependent
technique for supervised training. It works by measuring the
output error, calculating the gradient of this error, and
adjusting the ANN weights [4] (and biases) in the descending
gradient direction.

Hence, BP is a gradient descent local search procedure
(expected to stagnate in the local optima in complex
landscapes). The squared error of the ANN [5] for a set of
patterns is calculated using Eq. (2).

S -at)

i=1

E= )

m
p=1

The actual value of the previous expression depends on
the weights of the network. The basic BP algorithm
calculates the gradient of £ (for all the patterns) and updates
the weights by moving them along the direction of the
gradient descent. This can be summarized with the
expression Aw = —n\VE, where the parameter > 0 is the
learning rate that controls the learning speed. The pseudo-
code of the BP algorithm is shown in Fig. 2.

B. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm was
first introduced by Kennedy and Eberhart [6]. Instead of
using evolutionary operators to manipulate the individuals,
as in the case of other evolutionary computational
algorithms, each individual in the PSO flies in the search
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Fig. 3. Particle swarm optimization flowchart.

space with a velocity that is dymamically adjusted according
to its own flying experience and its companions’ flying
experience. Each individual is treated as a volume-less
particle (a point) in the D-dimensional search space. The i-th
particle is represented as X; = (x; X ...Xip). The best
previous position (the position giving the best fitness value)
of the i-th particle is recorded and represented as P; = (pi,
Pi» --Pip). The index of the best particle among all the
particles in the population is denoted by the symbol g,
representing the global best value. The index of the best
position for each particle in the population is denoted by the
symbol i, representing the individual’s best value. The rate
of the position change (velocity) for particle i is represented
as V;in the following equation: (v;, Vi, ...,vip). The particles
are manipulated according to the following equation.

Vig = Vig + ¢y xrand( ) * (pyp — Xia) +
c;xrand( ) * (Pgb - xid)
Xig = Xig + Viq - 3)

The algorithm can be summarized as follows (in Fig. 3):

1. Initialize the position and welocity of all the particles
randomly in the N-dimensional space.

. Evaluate the fitness value of each particle, and update the
global optimum position.

. According to the changing gathering degree and the
steady degree of the particle swarm, determine whether
all the particles are re-initialized or not.

. Determine the individual’s best fitness value. Compare
the p; value of every individual with its current fitness
value. If the current fitness value is better, assign the
current fitness value to p;.
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5. Determine the current best fitness value in the entire
population. If the current best fitness value is better than
P, assign the current best fitness value to p,.

6. For each particle, update the particle velocity.

. Update the particle position.

8. Repeat Steps 2—7 until a stop criterion is satisfied or a
predefined number of iterations are completed.

3

C. PSO-BP Algorithm

PSO-BP is an optimization algorithm combining PSO
with BP [7, 8].The PSO algorithm [9] is a global algorithm
that has a strong ability to find the global optimistic result.
However, this algorithm has a disadvantage that the search
around the global optimum is very slow. In contrast, the BP
algorithm has a strong ability to find the local optimistic
result, but its ability to find the global optimistic result is
weak. The fundamental idea for this hybrid algorithm is that
at the beginning stage of searching for the optimum, PSO
[10] is employed to accelerate the training speed. When the
fitness function value has not changed for some generations,
or the change in value is smaller than a predefined number,
the search process is switched to the gradient descent search
according to this heuristic knowledge. The PSO-BP [11]
algorithm’s search process also starts by initializing a group
of random particles. First, all the particles are updated
according to Eq. (4).

Vig(t +1) = w v (t) + ¢, *rand( ) =
[Pia(®) — x;a(O] + ¢z * rand () * [pga () — x;4()],
xig(E+ 1) = x;4(8) + vig(t + 1)
1<i<n 1<d <D, @)

where ¢; and ¢, are the acceleration constants with positive

values and rand() is a random number between 0 and 1.

Further, w is the inertia weight [12], until a new-generation

set of particles is generated; then, these new particles are

used to search the global best position in the solution space.

Finally, the BP algorithm is used to search around the global

optimum. Thus, this hybrid algorithm may find an optimum

more quickly.
The procedure for this PSO-BP algorithm can be
summarized as follows:

1. Initialize the positions and velocities of a group of
particles randomly in the range of [0, 1].

2. Evaluate each initialized particle’s fitness value, and set
Py, as the positions of the current particles and P, as the
best position of the initialized particles.

3. If the maximal iterative generations are arrived, go to
Step 8; else, go to Step 4.

4. The best particle of the current particles is stored. The
positions and velocities of all the particles are updated
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according to Eq. (4), and then, a group of new particles
is generated. If a new particle flies beyond the boundary
[Xmin, Xmax], the new position will be set as Xmin or
Xmax; if a new velocity is beyond the boundary [Vmin,
Vmax], the new velocity will be set as Vmin or Vmax.

5. Evaluate each new particle’s fitness value, and replace
the worst particle by the stored best particle. If the i-th
particle’s new position is better than P, Py, is set as the
new position of the i-th particle. If the best position of
all new particles is better than P,, then P, is updated.

6. Reduce the inertia weights w according to the selection
strategy.

7. If the current P, is unchanged for ten generations, then
go to Step 8; else, go to Step 3.

8. Use the BP algorithm to search around P, for some
epochs. If the search result is better than P, output the
current search result; else, output P,. This is only the
first type of condition; we can also use Steps 9-11 to
replace the above Steps 6-8, and then, obtain the second
type of condition.

9. Use the BP algorithm to search around P, for some
generations. If the search result is better than P,, P, is
set for the current search result. Else, compare it with
the worst particle of the current particles; if it is better
than the best particle, use it to replace the worst particle;
else, go to Step 7.

10. Reduce the inertia weights w.

11. Output the global optimum P,. The parameter w in the
PSO-BP algorithm also reduces gradually as the iterative
generation increases.

This algorithm has a parameter called the learning rate
[13] that controls the convergence of the algorithm to an
optimal local solution; however, obtaining a good value for
this parameter is difficult.

lll. PROPOSED ALGORITHM (DYNAMIC PSO-BP)

PSO combined with BP gives good result in learning but
due to some cons of basic PSO, we modified it with some
dynamic constraints where during the learning process of
the ANN objective space can be compressed or expanded. In
PSO, each particle should be kept in a confined space
corresponding to the parameter limitations. This decreases
the diversity of the particle. If the global best particle does
not change its gu position after one iteration, then
stagnation occurs in the population. Then, the solution may
be a local optimal solution. That is, due to its stochastic
behavior, it is not possible to find a way to the global
optimum. The drawback of PSO is that the swarm may
converge prematurely. The underlying principle behind this
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problem is that for the global best PSO, particles converge
to a single point, which is on the boundary between the
global best and the personal best positions. This point is not
guaranteed for a local optimum. Another reason for this
problem is the fast rate of information flow between
particles, resulting in the creation of similar particles with a
loss in diversity that increases the possibility of being
trapped in the local optima. A further drawback is that
stochastic approaches have a problem-dependent perfor-
mance. This dependency usually results from the parameter
settings in each algorithm. The different parameter settings
for a stochastic search algorithm result in high performance
variances. In general, no single parameter setting can be
applied to all problems. Increasing the inertia weight (w)
will increase the particle speed, resulting in more
exploration (global search) and less exploitation (local
search). On the other hand, reducing the inertia weight will
decrease the particle speed, resulting in more exploitation
and less exploration. Thus, finding the best value for the
parameter is not an easy task and may differ from one
problem to another. Therefore, from the above, it can be
concluded that the PSO performance is problem dependent.
The problem-dependent performance can be addressed
through a hybrid mechanism that combines different
approaches in order to benefit from the advantages of each
approach.

To overcome such limitations, a multiple-swarm PSO
algorithm called dynamic multiple swarms in PSO is
proposed in which the number of swarms is adaptively
adjusted throughout the search process via a dynamic swarm
strategy. The strategy allocates an appropriate number of
swarms required to support the convergence and diversity
criteria among the swarms. The main objective of this is
to develop a multiple-swarm PSO that eliminates the
need to estimate an initial number of swarms to improve
the computational efficiency without compromising the
performance of the algorithm. Once the swarm template
(x,en) 18 generated, the template is perturbed to generate a
swarm of particles. In order for perturbation to happen, the
perturbation region centered around x,,,, needs to be defined;
in addition to x,.,, a particle from every swarm is randomly
selected. For example, Fig. 4 shows eight randomly selected
particles from eight different swarms in addition to x,,,. The
black circle in Fig. 4 represents the coordinate of x,,,. i.e.,
(Xnews Ja» Xnews Jp)- Since there are more than two corners
around the coordinate of x,., (i.e., represented by the ‘x’
symbol and labeled as Z1-Z6 in Fig. 4), a corner is
randomly selected. In Fig. 4, the selected corner is Z2 and is
denoted as v. The distance between the center and 72, i.e., D,
is computed to form the perturbation region of x,.,. The
proposed algorithm, DPSO, involves two key strategies: a
swarm growing strategy to allocate more swarms if
necessary and justified, and a swarm declining strategy to

127

eliminate swarms that fail to contribute in the search of a

Pareto front. Additional designs are included to support the

aforementioned two strategies. These designs include the

following:

1) cell-based rank density estimation scheme to keep track
of the rank and density values of the particles;

2) objective space compression and expansion strategy to
adjust the size of the objective space whenever needed to
progressively search for a high-precision true Pareto
front;

3) PSO updating equation modified to exploit its usefulness
and to accommodate the multiple swarm concept; and

4) local best archive of swarms updated on the basis of the
progression of its swarm representatives, the swarm
leaders.

In DPSO adding and removing the swarms throughout the
search process will directly affect the swarm population
distribution. Instead of applying the Pareto ranking method
to update the Pareto rank of the particles and applying a
niching strategy to estimate the density of the particles when
the swarm population progresses at every iteration.

1. If the local best archive of swarms is empty or the
reinitialized parameter is triggered, record rank values of
all swarm leaders, including their corresponding
positions and the positions of their respective swarm
members.

2. If the local best archive of swarms is nonempty, compare
the rank values of the swarm leaders in the current
iteration with those recorded in the local best archive of
swarms. Any current swarm leader that has a relatively
low rank value is identified, and its rank value, its
position, and the positions of its corresponding swarm
members will replace the recorded values. For this
purpose, BP is used.

In the DPSO-BP algorithm, to know when the search
process is transited from the particle swarm search to the
gradient descent search, a heuristic way was introduced.

”
2]

Fig. 4. Generation of swarm template: Xyeu.
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That is, when the best fitness value in the history of all
particles does not change for some generations (i.e., ten
generations), the search process is transferred to the gradient
descent search. When the best fitness does not change for
some generations, all the particles may lose the ability to
find a better solution; at this time, a gradient descent search
can be used to obtain better results. If the rank values of a
current swarm and its recorded swarm leader have the same
rank value, then the pure Pareto ranking method is applied
to both the swarm leaders. If the current swarm dominates
the recorded swarm leader, then the current one will replace
the recorded one. If both do not dominate each other, one of
them is randomly chosen to update the local best archive of
swarms. The new velocity and position are given in Eq. (5).

vl + 1) = w x v(0) + o + 13 % (P(0) = vl (0))
€y X Ty X (Pg_j(t) - xi'_lj(t)) +e3x(1—r1)
x [rs x (PI(0) = x15(0)) + (1 = 73) x (P (6) — 20 ()]
i+ 1) =@ +VE+1) , &)

where v[';(?) is the j-dimensional velocity of swarm member
i of swarm n in iteration #; x[;(?), the j-dimensional position
of swarm member i of swarm # in iteration #; P/;(?), the j-
dimensional personal best (py.) position of the swarm
members i of swarm n in iteration # Pg;(¢), the j-
dimensional global best (gy.) selected from the archive in
iteration # P[';(?), the j-dimensional local best position of
the swarm leader of swarm # in iteration #; and P[;(¢) (with
a superscript 1), the j-dimensional local best position of any
swarm leaders other than their own swarm leader in iteration
t. Further, r, r,, and r; are random numbers within [0, 1]
that are regenerated every time they occur; w is the inertial
weight that varies between 0.1 and 0.5 at every iteration;
and c;, ¢,, and c¢; are the acceleration constants. Each of the
acceleration constants is randomly varied between 1.5 and 2
to place different emphasis on the components. When the
objective space compression strategy [14] is applied several
times in the early iterations, there is a possibility that the
objective space is overly compressed and can cause the

boundaries of the objective to not cover the true Pareto front.

IV. EXPERIMENTAL RESULT AND DISCUSSION
A. Standard Datasets

We choose two different datasets of small and large
dimensions for the experiment. It is assumed that the
proposed hybrid learning algorithm works in both these
environments. The datasets are the e-learning dataset
(number of patterns = 90) and the thyroid dataset (number
of patterns = 7,200).
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B. Results and Algorithm Settings

In the following experiments, two datasets are chosen for
comparing the performances of the BP, PSO, PSO-BP, and
DPSO-BP algorithms in evolving the weights of the ANN.
Suppose that every weight in the network was initially set in
the range of [-50, 50], and all thresholds in the network were
0 s. Further, suppose that every initial particle was a set of
weights generated at random in the range of [0, 1]. Let the
initial inertial weight w be 1.8, the acceleration constants,
both ¢; and ¢, be 2.0, ; and r, be two random numbers in
the range of [0, 1]. The maximum velocity was assumed as
10 and the minimum velocity as -10. The initial velocities of
the initial particles were generated randomly in the range of
[0, 1]. After each iteration, if the calculated velocity was
larger or smaller than the maximum velocity or the
minimum velocity, velocity would be reset to 10 or -10. The
population size was a variable that was set according to the
dataset. In this example, we trained an ANN with the
structure of 1-S1-1. The training algorithms used were the
DPSO-BP, DPSO, and BP algorithms. Assuming that S1 = 3,
4,5, 6, 7, x was obtained from the range of [0, p] and the
training set was obtained at an identical sampling interval of
0.03 from [0, p]; further, the test set was obtained at an
identical sampling interval of 0.1 from 0.02 to p. For every
fixed hidden unit number, we ran the training algorithms for
each dataset. We set the maximum number of training
iterations at 7,000 times for the algorithms.

Algorithms for training ANNs were compared. Tests were
conducted on gradient descent algorithms such as BP, and
population-based heuristics such as PSO. Experimental results
showed that DPSO-BP outperformed all other algorithms in
training neural networks. In this study, the DPSO-BP
algorithm, which is a new, simple, and robust optimization
algorithm, was used to train the standard and e-learning
datasets for classification purposes. Training procedures
involved the selection of the optimal values of the parameters,
such as the weights between the hidden layer and the output
layer, spread parameters of the hidden layer base function,
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propagation, DPSO: dynamic PSO.

center vectors of the hidden layer, and bias parameters of
the neurons of the output layer.

PSO and PSO-BP algorithms showed better performance
than derivative-based methods; however, these algorithms
had the disadvantage of a slow convergence rate. Trapping a
local minimum was a disadvantage for these algorithms.
When the learning performances were compared, exper-
imental results showed that the performance of the proposed
algorithm was better than that of the others.

The success of the classification results of the test
problems was superior and correlated with the results of
many research [9, 10, 12]. In real-time applications, the
number of neurons might affect the time complexity of the
system. The results of the e-learning classification problem
were reasonable and might help training algorithms in other
e-learning applications.

Fig. 5 shows the recognition rate of different algorithms
while training an ANN in the thyroid dataset. Here, the red
line denotes the proposed algorithm, while the blue and
black lines denote the results of PSO and PSO-BP,
respectively. It can be inferred from Fig. 5 that PSO-BP has
a better recognition rate than PSO. Apparently, the PSO
algorithm has a very low recognition rate while learning the
ANN, but when it is combined with the BP algorithm, the
mean recognition rate increases, as shown in Fig. 5. How-
ever, the proposed algorithm again increases the rate of
recognition due to its dynamic nature. This shows that the
DPSO-BP algorithm is more stable, while in the training
process, the DPSO-BP algorithm uses less CPU time than
the PSO-BP algorithm and the PSO algorithm.
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PSO: particle swarm optimization, BP: back-

Fig. 6 illustrates the curves of the training errors and the
testing errors for the three training algorithms using the e-
learning dataset. Fig. 6(a), (c), and (e¢) show the training error
curves of the PSO, PSO-BP, and DPSO-BPA algorithms,
respectively. Fig. 6(b), (d), and (f) illustrate the testing error
curves of the PSO, PSO-BP, and DPSO-BPA algorithms,
respectively. When the value of x is smaller, there are fewer
training samples and testing samples. Further, it can be seen
from Fig. 6 that the DPSO algorithm has better training and
testing errors than the BP algorithm. When the value of x is
larger, there are more training samples and testing samples.
Moreover, it can be seen that the BP algorithm has better
training and testing errors. The hybrid algorithm combines
the advantages of the DPSO algorithm and the BP algorithm;
therefore, it can be observed that the DPSO-BP algorithm
has better training and testing errors.

V. CONCLUSIONS

In this paper, a hybrid DPSO-BP algorithm is proposed,
which combines the PSO algorithm’s strong ability of global
learning and the BP algorithm’s strong ability of local
learning. Hence, we can obtain better training results by
using this hybrid algorithm. Some heuristic knowledge is
adapted to transit from the DPSO algorithm search to the BP
algorithm search. That is, when the best fitness value in the
history of all particles does not change for some generations
(i.e., ten generations), the search process is transferred to the
gradient descent search. The heuristic way is used to avoid
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wasting too much CPU time on a vain search (as used in
the other compared algorithms); therefore, the training
efficiency of the DPSO-BP algorithm is improved
considerably. A different selection strategy is introduced for
updating the inertial weight w. In the initial searching stage,
the searching inertial weight is reduced rapidly in order to
rapidly achieve the global optima. Then, around the global
optimum, we reduce the inertial weight more smoothly by
using BP so that a higher accuracy can be achieved.

From the conducted experiments, we conclude that for the
same goal, the DPSO-BP algorithm uses less CPU time and
provides higher training accuracy than the PSO algorithm
and the BP algorithm. A comparative study shows that the
performance of the variant is competitive in comparison
with the selected algorithms on standard benchmark
problems. It is concluded that the DPSO-BP algorithm is
more stable than the BP algorithm and the PSO algorithm.
In future research works, we shall focus on how to apply
this hybrid PSO algorithm to solve more practical problems.
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