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I. INTRODUCTION 
 

According to the Federal Communication Commission, 

most of radio spectrum is underutilized, which leads to 

inefficient usage of the allowed spectrum [1]. Cognitive 

radio (CR) technology has been studied as an approach to 

increase spectrum efficiency by allowing dynamic spectrum 

access. A major challenge in CR is spectrum sensing, which 

is used to detect whether a spectrum is occupied by a 

licensed user (LU). The sensing performance of a secondary 

user (SU) degrades because of the presence of channel 

effects such as fading, shadowing, and the hidden terminal 

problem. These problems are overcome by the use of 

cooperative spectrum sensing, which involves an exchange 

of local sensing results between multiple SUs by using a 

centralized or decentralized fusion center to arrive at the 

final decision regarding the presence or absence of an LU 

[2].  

However, multiple SUs sending their local sensing result 

to the fusion center also increases the number of security 

risks. One of the security issues is the spectrum sensing data 

falsification (SSDF) attack, where a malicious user (MU) 

purposely reports false local sensing data to the SUs, 

thereby negatively influencing the overall decision. In [3], 

the authors discussed the security threats from passive and 

active points of view; the authors discussed the physical 

layer security for a passive attack; and MU detection is 

introduced for an active attack by using signal detection 

techniques to reduce the system interference. In [4], the 

authors used a weighted sequential probability test (WSPRT) 
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Abstract 

In cognitive radios, spectrum sensing plays an important role in accurately detecting the presence or absence of a licensed user. 

However, the intervention of malicious users (MUs) degrades the performance of spectrum sensing. Such users manipulate the 

local results and send falsified data to the data fusion center; this process is called spectrum sensing data falsification (SSDF). 

Thus, MUs degrade the spectrum sensing performance and increase uncertainty issues. In this paper, we propose a method 

based on the Hausdorff distance and a similarity measure matrix to measure the difference between the normal user evidence 

and the malicious user evidence. In addition, we use the Dempster-Shafer theory to combine the sets of evidence from each 

normal user evidence. We compare the proposed method with the k-means and Jaccard distance methods for malicious user 

detection. Simulation results show that the proposed method is effective against an SSDF attack. 
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to identify MUs on the basis of their reputation, which is 

determined by the rating assigned to every user. In [5], the 

authors proposed a correlation of utilization and shadow 

fading to detect malicious users. In [6], the authors proposed 

a scheme where the maximization of the secondary secrecy 

rate is subject only to the maintenance of a certain level of 

quality of service for a primary user via the interference 

threshold. In [7], the authors considered cooperative 

spectrum sensing with the existence of an MU; the authors 

formulated the detailed detection performance to analyze the 

impact of incorrect information on the sensing. Further, an 

authentication mechanism is proposed to filter out the 

incorrect information from the system. In [8], the authors 

addressed the problem of cooperative spectrum sensing in a 

CR network: in the presence of misbehaving CRs, an 

iterative expectation maximization is formulated and solved 

for hypothesis verification and radio classification. Similarly, 

in [9], the authors proposed a cross-layered approach to 

provide SUs with the ability to differentiate between a 

primary user and an MU by using a hidden Markov model at 

the media access control (MAC) sublayer. In [10], the 

authors presented a decentralized scheme for detecting MUs 

in cooperative spectrum sensing. 

The authors of [11] and [12] explored the Dempster-

Shafer (D-S) evidence theory in cooperative spectrum 

sensing but have not taken into account the MU’s activity. In 

[13], the authors proposed a reliable method based on 

clustering cooperating sensors; a cluster with no malicious 

user was found by using a fast sensor search algorithm. The 

authors’ model is based on trusted sensors and uses only the 

results obtained by these sensors; thus, the information of 

malicious sensors is not considered in the spectrum decision 

process. In [14], the authors utilized both the advantages of 

the D-S evidence theory combined with an enhanced 

weighted stage and the capability of robust statistics used 

for the elimination of MUs. In [15], the authors proposed a 

robust cooperative spectrum sensing scheme based on the 

D-S theory and the calculation of the trustworthiness degree. 

In [16], the authors developed a trust-based data aggregation 

scheme to tackle an MU attack; the scheme combined first-

hand and second-hand sensing evidence to guarantee 

performance and adopt a static game model to discourage 

MUs from fake reporting. In [17], the authors proposed a 

similarity degree that calculated the reliability of evidence 

and then combined reliable sets of evidence sent by honest 

users, but the authors did not consider the physical position 

of the users, and MUs were found on the basis of its 

cardinality, which was practically unreliable. 

In this paper, we propose a method using the Hausdorff 

distance and a similarity measure matrix. First, the 

Hausdorff distance is used for measuring the difference 

between two sets of evidence, and then, the similarity 

measure matrix is used for calculating the similarity 

between each normal user’s evidence and identifying MUs. 

The credibility (reliability) of MUs is less than that of 

normal users, and by using this value, we can remove the 

MUs. Finally, after removing the MUs, we use the D-S 

evidence theory to combine the normal users and estimate 

the performance of cooperative spectrum sensing. 

The rest of this paper is organized as follows: In Section 

II, we describe the system model of the proposed system. In 

Section III, we describe the proposed cooperative spectrum 

sensing-based Hausdorff distance method and the D-S 

evidence theory. In Section IV, we discuss the simulation 

results. Finally, we conclude the paper in Section V. 

 

 

II. SYSTEM MODEL 
 

We consider a CR network, which consists of a LU, 

cognitive user (CU), MU, and fusion center (FC), as shown 

in Fig. 1. In the proposed system, we consider a multiple 

energy detector (MED), which has M energy detectors, each 

having a single antenna; the result of these antennas is 

LU

CU

CU

CU

CU

MU

FC

 

Fig. 1. System model of cognitive radio network. LU: licensed user, 

CU: cognitive user, MU: malicious user, FC: fusion center. 

 

 

Fig. 2. Multiple energy detector (MED) of each cognitive user (CU). 

LU: licensed user. 
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combined at the CU by using the equal gain combining 

(EGC) method, as shown in Fig. 2. 

In the first step, each CU performs local sensing by using 

MED. The local sensing at each CU (with a single energy 

detector) can be formulated as a binary hypothesis as 

follows: 

1
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,          (1) 

where 
oH  and 

1H
 

denote the absence or presence of the 

LU, respectively. 

In the case of MED, local sensing can be formulated as 

follows: 
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where 1,2,3... ci N
 

denotes the number of CUs, 

1,2,3...j M
 

represents the number of antennas, 

1,2,3...n N  indicates the number of samples, ( )s n  

refers to the LU signal, ,i jh
 

denotes the fading channel 

coefficient of the thi  CU at the thj  antenna, and , ( )i jw n
 

represents the additive white Gaussian noise. 

The signal received at each antenna is multiplied by a 

weight  . The energy received at each antenna is 

measured and is given as follows: 
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The energy of each CU received from M antennas is 

given as follows: 

,
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The energy calculated at each detector is combined using 

the EGC method, which is given as follows: 

1
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where , (n)i jX  denotes the sample of the received signal 

and 2N TW , where T  represents the detection time and 

W  indicates the bandwidth. When N is sufficiently large, 

E  can be well approximated by the Gaussian random 

variable in the cases of both hypotheses 0H
 

and 1H , and 

can be expressed as follows [18]: 
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where 
0  

and 
1  denote the mean of E , and 2

0    and 
2

1    represent the variances of E  in the cases of 

hypotheses 
0H

 
and 

1H , respectively, and ,i j  indicates 

the signal-to-noise ratio of the primary signal at the CU. 

 

 

III. PROPOSED COOPERATIVE SPECTRUM 
SENSING BASED ON HAUSDORFF 
DISTANCE AND D-S THEORY OF 
COMBINATION 

 

In this section, we provide a detailed description of the 

proposed method for the detection of an MU and the 

mitigation of its adverse effects. First, we measure all the 

users’ evidence by using the basic probability assignment 

(BPA) method. Then, we calculate the differences among 

the sets of evidence by using the Hausdorff distance and 

formulate the similarity measure matrix. After forming the 

similarity measure matrix, we calculate the credibility of the 

sets of evidence and compare it with a fixed threshold value. 

If the credibility value is greater than the threshold value, 

the user is considered a normal user, and if it is less than the 

threshold value, the user is considered to be an MU. Finally, 

we combine the evidence of the normal users at the fusion 

center. The overall flow chart of the proposed system is 

shown in Fig. 3. 

 

 

 

Fig. 3. Proposed cooperative spectrum sensing based on Hausdorff 

distance and Dempster-Shafer (D-S) evidence theory. LU: licensed user, 
CU: cognitive user. 
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A. Basic Probability Assignment 
 

The D-S evidence theory is one of the candidates for the 

decision-making to combine users’ evidence, where the 

system faces an uncertainty problem. In the D-S evidence 

theory, the frame of discernment A  can be defined as 

 1 0, ,H H  , where   denotes the ignorance hypothesis, 

which describes whether the hypothesis is true. After MED 

performs sensing, each CU collects the local information 

from MED by using the EGC method and then, measures 

the basic BPA 
0m( )H

 
and 

1m( )H
 

by using hypotheses 

0H and
1H , respectively. The BPA function is defined as a 

cumulative density function as follows [12]: 
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i 0 1m ( ) 1 ( ) ( )i im H m H    ,          (9) 

 

where 
i 0m ( )H , 

i 1m ( )H , and 
im ( )  represent the BPA 

function of the thi  CU. 

 
B. Detection of Malicious User and Mitigation 

of Its Adverse Effects Using Hausdorff 
Distance 

 

An MU falsifies the local detection results, and thus, its 

evidence is different from that of a normal user to some 

extent. Several alternatives for quantifying a similarity 

between focal elements have been proposed [19]. In this 

paper, we propose a method using the Hausdorff distance to 

measure the difference between the evidence of two 

different sources, because the Hausdorff distance measures 

the degree of mismatch between two sets; we then form a 

similarity matrix to find the similarity between the sets of 

evidence. After the similarity matrix formation, malicious 

users and normal users are separated on the basis of their 

credibility values. 

The Hausdorff distance provides a simple method for 

quantifying the distance between two sets of evidence im  

and jm , and is one of the most widely used measures for 

quantifying such a distance. It can quantify the distance 

between two sets of evidence as follows: 

H(m ,m )   max{ inf h(m ,m ), sup inf h(m ,m )}
j j i i

i i j j

i j i j j i
m A m Am A m A

sup
  

 , (10) 

where h(m ,m )i j denotes the distance between two 

elements of the sets and can be defined as any valid distance 

in the measurement space [20]. 

The similarity measure Sim(m ,m )i j between sets of 

evidence is defined as follows: 

 

Sim(m ,m )  1  H(m ,m )i j i j  .         (11) 

 

Suppose that we have n sets of evidence; after obtaining 

the degree of similarity between the sets of evidence, we can 

construct the similarity measure matrix (SMM), which 

expresses the agreement between the sets of evidence as 

follows: 
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The degree of support of the evidence of a CU with 

respect to the evidence of other CUs is given as follows: 
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The credibility degree of evidence is given as follows: 
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After calculating the credibility of the evidence, we 

compare it with a fixed threshold value. If the credibility is 

greater than the threshold value, the user is authenticated as 

a normal user, and if the credibility is less than the threshold 

value, the user is considered to be an MU and is prevented 

from sending its evidence to the fusion center for the final 

decision. 
 
C. Final Decision at Fusion Center 

 

Once MUs are removed by using the proposed method 

using the Hausdorff distance, the sets of evidence of the 

normal users are sent to the fusion center. The fusion center 

combines these sets of evidence by using the D-S evidence 

theory. At the fusion center, BPAs are sequentially combined 

in the order of the arrival of normal evidence as follows: 

, 1,( ) ( ) ( )k global j k global j k jm H m H m H  ,      (15) 

where j = 0,1, , ( )k global jm H
 

and 1, ( )k global jm H denote 

the k-th and (k-1)-th global BPA hypothesis jH , 
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respectively, and the combination operator   is defined 

on the basis of the evidence theory as follows: 

b j

b j

b 1 j 1 b j
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where j = 0,1 and a and b denote the two arbitrary 

combining sources. 

The final decision df  at the fusion center can be 

calculated as follows: 
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where   denotes the threshold for the hypotheses 
0H

 
and 

1H , respectively. 

 

 

 

Fig. 4. ROC curve in always busy attack. MU: malicious user. 

 

 

Fig. 5. ROC curve in always free attack. MU: malicious user. 

IV. SIMULATION RESULTS AND ANALYSIS  
 

This section presents the results of MATLAB simulations 

of the proposed method and compares the performance of 

the proposed method with that of the k-means and Jaccard 

distance methods. Simulations consider scenarios with and 

without MUs. According to the CR system, every CU should 

vacate the channel if an LU signal is detected. Thus, the 

existence of an MU will degrade the performance of 

cooperative spectrum sensing. 

 In scenarios with MUs, five CUs are randomly placed, 

among which one is an MU. The energy of each CU is 

measured using MED, and the information from MED is 

combined at each CU by using the EGC method; the number 

of MEDs = 2. The probability of the presence of an LU is set 

to 0.5, the bandwidth is set to 6 MHz, and the sensing time is 

set to 50 μs. The fusion center combines the sets of evidence 

of the normal users sequentially and forms a global decision. 

We consider three types of SSDF attacks: always busy 

(AB), always free (AF), and random attack in the network. In 

an AB attack, the MU changes the evidence of 
i 1m ( )H  in 

the absence of an LU, which increases the probability of a 

false alarm and decreases the probability of detection. In an 

AF attack, the malicious user changes the evidence of 

i 0m ( )H  in the presence of an LU, which increases the 

probability of misdetection and decreases the probability of a 

false alarm, whereas in the case of a random attack, the MU 

carries out the AB and AF attacks randomly with probability 

p. 

In Fig. 4, we have drawn the receiver operating 

characteristic (ROC) curve of the proposed method for an 

AB attack and compared its performance with the 

performance of the k-means and Jaccard distance methods. 

We have shown the performance of the proposed method 

with and without an MU attack in the network. It can be 

observed that when an AB attack occurs in the network, the 

probability of a false alarm increases and the probability of 

detection decreases; for example, when the probability of a 

false alarm equals 0.2, the probability of detection decreases 

from 0.9 to 0.1. The proposed method is able to detect and 

remove an MU from the network, resulting in better 

performance than the Jaccard distance and k-means methods. 

In an AF attack, the probability of a false alarm decreases, 

while the probability of misdetection increases, which 

increases the interference in the network. In Fig. 5, we have 

plotted the ROC curve with and without an MU in the 

network. It can be observed that the proposed method 

detects an MU and mitigates its adverse effects more 

effectively than the Jaccard distance method. The k-means 

method matches the performance of the proposed method at 

some points because it randomly selects the starting point 

for differentiating between the MU evidence and the normal 

user evidence. 
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Fig. 6. ROC curve in random attack. MU: malicious user. 

 

 

 

Fig. 7. ROC curve of proposed method for different reliability values. MU: 

malicious user. 

 

 

The simulation results of a random attack by an MU are 

shown in Fig. 6. The performance of the proposed method is 

better than that of the k-means and Jaccard distance 

approaches. From the simulation results, we can conclude 

that in all cases, i.e., AB, AF, and random attacks, the 

proposed method is better than the Jaccard distance and k-

means methods in detecting an MU and mitigating its 

adverse effects on cooperative spectrum sensing. 

In Fig. 7, we have shown the ROC curve for scenarios 

with and without an MU and different values of reliability. 

As the reliability of the CU increases, it allows more sets of 

evidence to be sent to the FC and yields better results, which 

can be observed in Fig. 7, when the reliability increases 

from 0.4 to 0.7, because more sets of evidence reach the FC 

to help formulate a better decision.  

 

 

V. CONCLUSION 
 

In this paper, we proposed a method using the Hausdorff 

distance and a similarity measure matrix with the D-S 

evidence theory to detect an MU in a network and mitigate 

its adverse effects. The D-S evidence theory is one of the 

candidates to deal with the uncertainty of the evidence and 

improve the spectrum sensing performance. In this work, we 

considered three types of SSDF attacks, i.e., AB, AF, and 

random attacks. In our simulation, we compared the 

proposed method with the Jaccard distance method, which is 

also based on similarity, and with the k-means method. On 

the basis of the simulation results, we have shown that the 

proposed method is more effective than the other methods 

with respect to SSDF attacks. 
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