Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

간암 호흡동조 방사선치료 환자의 호흡신호분석

  • Kang, dong im (Department of Radiation Oncology, Samsung Medical center) ;
  • Jung, sang hoon (Department of Radiation Oncology, Samsung Medical center, Sungkyunkwan University School of Medicine) ;
  • Kim, chul jong (Department of Radiation Oncology, Samsung Medical center, Sungkyunkwan University School of Medicine) ;
  • Park, hee chul (Department of Radiation Oncology, Samsung Medical center, Sungkyunkwan University School of Medicine) ;
  • Choi, byung ki (Department of Radiation Oncology, Samsung Medical center, Sungkyunkwan University School of Medicine)
  • 강동임 (삼성서울병원 방사선종양학과) ;
  • 정상훈 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 김철종 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 박희철 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 최병기 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실)
  • Received : 2015.04.02
  • Accepted : 2015.06.24
  • Published : 2015.06.30

Abstract

Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

목 적 : 외부표지자 호흡움직임 측정 장치(RPM; Real-time Position Management, Varian Medical System, USA)를 이용한 간암 호흡동조 방사선치료 시 호흡신호와 방사선 조사 시간 및 실제 조사된 호흡위상을 분석하여 호흡움직임 측정 장치를 이용한 호흡동조 방사선 치료의 정확도를 평가하였다. 대상 및 방법 : 2014년 5월부터 9월까지 Novalis Tx.(Varian Medical System, USA)와 RPM을 이용하여 간암 호흡동조 방사선치료(Duty Cycle 20%, Gating window 40% ~ 60%)를 시행한 환자 총 16명의 치료 시 기록된 호흡움직임을 분석하였다. RPM에 기록된 외부표지자의 호흡움직임을 후행적 분석을 통해 호흡위상으로 재구성하였으며, 재구성된 호흡위상을 이용하여 기록된 Beam-on Time과 Duty Cycle에 대해 RPM을 사용한 호흡동조 방사선치료의 예측 정확도를 분석하고, 호흡움직임의 재현성에 따른 Duty Cycle과 예측 정확도의 상관관계를 분석하였다. 결 과 : 대상 환자 16명의 치료계획 시와 실제 치료 시 호흡주기 차이는 평균 -0.03초(범위 -0.50초 ~ 0.09초)로 분석되었으며 두 호흡간의 통계적 차이는 확인할 수 없었다(p=0.472). 치료 시 평균 호흡주기는 4.02 sec (${\pm}0.71sec$), 치료 중 호흡주기 표준편차의 평균값은 7.43%(범위 2.57% ~ 19.20%)로 분석되었다. 실제 Duty Cycle은 평균 16.05%(범위 13.78% ~ 17.41%)로 나타났고 이 중 후행적 분석을 통해 평균 56.05%(범위 39.23% ~ 75.10%)가 계획된 호흡위상(40% ~ 60%)에서 조사되었음을 확인하였다. 호흡주기의 표준편차와 Duty Cycle과 계획된 호흡위상에서 조사된 비율의 상관관계는 각각 -0.156 (p=0.282)와 -0.385 (p=0.070)으로 분석되었다. 결 론 : 본 연구는 실제 치료 중 기록된 외부표지자의 호흡움직임을 후행적으로 분석하여 치료 중 호흡움직임의 재현성 및 Duty Cycle, 계획된 호흡동조창에서의 실제 치료 비율 등을 확인하였다. 4DCT를 이용한 치료계획과의 오차를 최소화하고 효율적인 치료를 위해 호흡훈련 및 호흡신호 모니터링의 강화가 필요 할 것으로 판단된다.

Keywords

References

  1. Keal PJ, Mageras GS, Balter M, et al: The management of respiratory motion in radiation oncology report of AAPM Task Group. Med Phys 33:3874-3881 (2006) https://doi.org/10.1118/1.2349696
  2. Britton KR, Starkschall G, Tucker SL, et al: Assessment of gross tumor volume regression and motion changes during radiotherapy for non-small-cell lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 68:1036-1046 (2007) https://doi.org/10.1016/j.ijrobp.2007.01.021
  3. Chang J, Mageras GS, Yorke E, et al: Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int J Radiat Oncol Biol Phys 67:1548-1558 (2007) https://doi.org/10.1016/j.ijrobp.2006.11.055
  4. Weiss E, Wijesooriya K, Dill SV, et al: Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. Int J Radiat Oncol Biol Phys 67(1):296-307 (2007) https://doi.org/10.1016/j.ijrobp.2006.09.009
  5. Rietzel E, Liu AK, Chen GTY, et al: Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oncol Biol Phys 71(4): 1245-1252 (2008) https://doi.org/10.1016/j.ijrobp.2008.03.030
  6. Ju SG, Hong C, Huh W, et al: Development of an offline based internal organ motion verification system during treatment using sequential cine EPID images. Korean J Med Phys 23(2): 91-98 (2012)
  7. Berson AM, Emery R, Rodriguez L, et al: Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. Int J Radiat Oncol Biol Phys 60:419-426 (2004) https://doi.org/10.1016/j.ijrobp.2004.03.037
  8. Cardenas A, Fontenot J, Forster KM, Stevens CW, Starkschall G: Quality assurance evaluation of delivery of respiratory-gated treatments. Journal of Applied Clinical Medical Physics 5:55-61 (2005)
  9. Li XA, Keall PJ, Orton CG: Point/counterpoint. Respiratory gating for radiation therapy is not ready for prime time. Med Phys 34:867-870 (2007) https://doi.org/10.1118/1.2514027
  10. Ramsey CR, Scaperoth D, Arwood D, Oliver AL: Clinical efficacy of respiratory gated conformal radiation therapy. Med Dosim 24:115-119 (1999) https://doi.org/10.1016/S0958-3947(99)00006-0
  11. Saw C, Brandner E, Selvaraj R, Chen H, Saiful Huq M, Heron D: A review on the clinical implementation of respiratory-gated radiation therapy. Biomed. Imaging Interv J 3:1-8 (2007)
  12. Rietzel E, Chen GTY: Improving retrospective sorting of 4D computed tomography data. Med Phys 33(2):377-379 (2006) https://doi.org/10.1118/1.2150780
  13. Mutaf YD, Antolak JA, Brinkmann DH: The impact of temporal inaccuracies on 4DCT image quality. Med Phys 34(5):1615-1622 (2007) https://doi.org/10.1118/1.2717404
  14. Keall P, Mageras G, Balter J, Emery R: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874-3900 (2006) https://doi.org/10.1118/1.2349696
  15. Li XA, Keall PJ, Orton CG: Point/counterpoint. Respiratory gating for radiation therapy is not ready for prime time. Med Phys 34:867-870 (2007) https://doi.org/10.1118/1.2514027
  16. Hoisak JD, Sixel KE, Tirona R, et al: Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys 60(4):1298-1306 (2004) https://doi.org/10.1016/j.ijrobp.2004.07.681
  17. George R, Chung TD, Vedam SS, et al: Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 65(3):924-933 (2006) https://doi.org/10.1016/j.ijrobp.2006.02.035