DOI QR코드

DOI QR Code

Radioprotective Effect of Quercetin Post-Treatment against γ-Irradiation-Induced Hepatocellular and Hematopoiectic System Damage in Mice

감마선 조사로 유도된 간세포와 조혈계 손상 마우스에서 퀘르세틴 투여 후의 방사선방호 효과

  • Kang, Jung Ae (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Yoon, Seon Hye (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Rho, Jong Kook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Dae Seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jang, Beom-Su (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Sang Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 강정애 (한국원자력연구원 첨단방사선연구소) ;
  • 윤선혜 (한국원자력연구원 첨단방사선연구소) ;
  • 노종국 (한국원자력연구원 첨단방사선연구소) ;
  • 최대성 (한국원자력연구원 첨단방사선연구소) ;
  • 장범수 (한국원자력연구원 첨단방사선연구소) ;
  • 박상현 (한국원자력연구원 첨단방사선연구소)
  • Received : 2015.03.04
  • Accepted : 2015.03.30
  • Published : 2015.07.31

Abstract

This study was designed to evaluate the therapeutic effect of quercetin against radiation-induced hepatocellular and hematopoiectic damage in BALB/c mice. Mice were exposed to 6 Gy of ${\gamma}$-radiation and orally administered quercetin (25, 50 mg/kg b.w.) for 7 consecutive days. ${\gamma}$-Irradiation caused marked elevation of serum aspartate aminotransferase and alanine aminotransferase, levels as well as reduction of spleen index, thymus index, and the number of white blood cells. In addition, ${\gamma}$-irradiation induced significant elevation of lipid peroxidation as well as reduction of antioxidant enzyme activities, including superoxide dismutase, catalase, and glutathione peroxidase. However, post-treatment with quercetin resulted in a significant recovery of all of these parameters. These results suggest that quercetin acts as a potent radioprotector against irradiation-induced cellular damage in mice.

본 연구는 BALB/c 마우스에서 감마선 조사 후 퀘르세틴을 7일 동안 경구 투여하여 감마선 조사로 인한 조혈계 및 간세포 손상에 대한 방사선 회복 효과를 검토하였다. 퀘르세틴을 투여한 군은 감마선 조사군에 비해 비장 및 흉선 지수, 백혈구 수치가 증가하여 조혈 면역계 손상에 대해 보호 효과가 있음을 확인하였다. 또한 ALT와 AST의 활성도 감마선 조사군에 비해 유의적으로 감소하여 간세포 손상에 대한 보호 효과를 확인하였다. 방사선 조사에 의해 체내에서 생성된 자유라디칼은 생체물질과 결합하여 지질과산화를 일으키고 산화적 스트레스를 유도하여 조직을 손상시킨다. 퀘르세틴을 투여한 군의 지질과산화는 감마선 조사군에 유의적으로 낮게 나타나 방사선에 의한 장애를 감소시켰으며, 항산화 효소도 감마선 조사군에 비해 유의적으로 증가하여 생체 내 항산화 활성도 회복시켰다. 이상의 결과를 통해 방사선 조사후에 퀘르세틴의 투여는 방사선에 의한 조혈계 및 간세포 손상에 대해 회복 효과가 있어 방사선 보호제로 유용하게 사용될 수 있다.

Keywords

References

  1. Pradeep K, Park SH, Ko KC. 2008. Hesperidin a flavanoglycone protects against gamma-irradiation induced hepatocellular damage and oxidative stress in Sprague-Dawley rats. Eur J Pharmacol 587: 273-280. https://doi.org/10.1016/j.ejphar.2008.03.052
  2. Hosoda M, Tokonami S, Sorimachi A, Monzen S, Osanai M, Yamada M, Kashiwakura I, Akiba S. 2011. The time variation of dose rate artificially increased by the Fukushima nuclear crisis. Sci Rep 1: 87. https://doi.org/10.1038/srep00087
  3. Hosoda M, Tokonami S, Tazoe H, Sorimachi A, Monzen S, Osanai M, Akata N, Kakiuchi H, Omori Y, Ishikawa T, Sahoo SK, Kovacs T, Yamada M, Nakata A, Yoshida M, Yoshino H, Mariya Y, Kashiwakura I. 2013. Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident. Sci Rep 3: 2283. https://doi.org/10.1038/srep02283
  4. Morino Y, Ohara T, Watanabe M, Hayashi S, Nishizawa M. 2013. Episode analysis of deposition of radiocesium from the Fukushima Daiichi nuclear power plant accident. Environ Sci Technol 47: 2314-2322. https://doi.org/10.1021/es304620x
  5. Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, Beral V, Cowper G, Douglas A, Fix J, Fry SA, Kaldor J, Lave C, Salmon L, Smith PG, Voelz GL, Wiggs LD. 1995. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 142: 117-132. https://doi.org/10.2307/3579020
  6. Bansal P, Paul P, Kunwar A, Jayakumar S, Nayak PG, Priyadarsini KI, Unnikrishnan MK. 2012. Radioprotection by quercetin-3-O-rutinoside, a flavonoid glycoside - A cellular and mechanistic approach. J Funct Foods 4: 924-932. https://doi.org/10.1016/j.jff.2012.06.010
  7. Bolus NE. 2014. Basic review of radiation biology and terminology. J Nucl Med Technol 29: 67-73.
  8. Vijayalaxmi, Reiter RJ, Tan DX, Herman TS, Thomas CR Jr. 2004. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 59: 639-653. https://doi.org/10.1016/j.ijrobp.2004.02.006
  9. Hosseinimehr SJ. 2007. Trends in the development of radioprotective agents. Drug Discov Today 12: 794-805. https://doi.org/10.1016/j.drudis.2007.07.017
  10. Kang KA, Lee IK, Zhang R, Piao MJ, Kim KC, Kim SY, Shin T, Kim BJ, Lee NH, Hyun JW. 2011. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by ${\gamma}$-radiation-induced oxidative stress. Cell Biol Toxicol 27: 83-94. https://doi.org/10.1007/s10565-010-9172-4
  11. Hopia A, Heinonen M. 1999. Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate. J Am Oil Chem Soc 76: 139-144. https://doi.org/10.1007/s11746-999-0060-0
  12. Kim GN, Kwon YI, Jang HD. 2011. Protective mechanism of quercetin and rutin on 2,2'-azobis(2-amidinopropane)dihydrochloride or $Cu^{2+}$-induced oxidative stress in HepG2 cells. Toxicol In Vitro 25: 138-144. https://doi.org/10.1016/j.tiv.2010.10.005
  13. Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL. 2012. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 83: 6-15. https://doi.org/10.1016/j.bcp.2011.08.010
  14. Bergmeyer HU, Scheibe P, Wahlefeld AW. 1978. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem 24: 58-73.
  15. Ohkawa H, Ohishi N, Yagi A. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  16. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  17. Gough GR, Boggs SS, Schwartz GN. 1977. Changes in thymus size observed radiographically during the course of spontaneous lymphoma in the AKR/J mouse. Lab Anim Sci 27: 627-634.
  18. Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM. 1991. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 77: 472-480.
  19. Recknagel RO, Glende EA Jr, Dolak JA, Waller RL. 1989. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43: 139-154. https://doi.org/10.1016/0163-7258(89)90050-8
  20. Pradeep K, Ko KC, Choi MH, Kang JA, Chung YJ, Park SH. 2012. Protective effect of hesperidin, a citrus flavanoglycone, against ${\gamma}$-radiation-induced tissue damage in Sprague- Dawley rats. J Med Food 15: 419-427. https://doi.org/10.1089/jmf.2011.1737
  21. Emerit J, Edeas M, Bricaire F. 2003. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58: 39-46.
  22. Fridovich I. 1986. Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  23. De Freitas RB, Augusti PR, De Andrade ER, Rother FC, Rovani BT, Quatrin A, Alves NM, Emanuell T, Bauermann LF. 2014. Black grape juice protects spleen from lipid oxidation induced by gamma radiation in rats. J Food Biochem 38: 119-127. https://doi.org/10.1111/j.1745-4514.2012.00651.x
  24. Pratheeshkumar P, Kuttan G. 2011. Protective role of Vernonia cinerea L. against gamma radiation-induced immunosupression and oxidative stress in mice. Hum Exp Toxicol 30: 1022-1038. https://doi.org/10.1177/0960327110385959

Cited by

  1. 백하수오 에탄올추출물이 방사선조사에 따른 흰쥐의 혈구 및 장기에 미치는 영향 vol.39, pp.3, 2015, https://doi.org/10.17946/jrst.2016.39.3.21
  2. An Overview of the Cellular Mechanisms of Flavonoids Radioprotective Effects vol.10, pp.1, 2015, https://doi.org/10.15171/apb.2020.002