Value Distribution of the Product of a Meromorphic Derivative and a Power of the Function

Indrajit Lahiri* and Rajib Mukherjee
Department of Mathematics, University of Kalyani, West Bengal 741235, India
Department of Mathematics, Krishnanath College, Baharampur, West Bengal 742101, India
e-mail: ilahiri@hotmail.com and rajib_raju786@yahoo.com

Abstract. In the paper we discuss the value distribution of the product of the derivative of a transcendental meromorphic function and a power of the function.

1. Introduction

W. K. Hayman [5] proved the following result.

Theorem A. ([5]) If \(n \geq 3 \) is an integer and \(f \) is a transcendental meromorphic function, then \(f^n f' \) assumes all finite values, except possibly zero, infinitely often.

Hayman [7] also conjectured that Theorem A might be valid for \(n = 1 \) and \(n = 2 \). E. Mues [12] settled the conjecture for \(n = 2 \) and the case \(n = 1 \) was settled by W. Bergweiler and A. Eremenko [1] and by H. H. Chen and M. L. Fang [3].

In 1999 X. C. Pang and L. Zalcman [13] considered the general order derivative of an entire function. They proved the following result.

Theorem B. ([13]) Let \(f \) be a transcendental entire function, all of whose zeros have multiplicity at least \(k \) and let \(n \) be a positive integer. Then \(f^n f^{(k)} \) assume every nonzero finite value infinitely often.

Recently J. P. Wang [16] considered the meromorphic case and proved the following theorem.

Theorem C. ([16]) Let \(f \) be a transcendental meromorphic function all of whose zeros have multiplicity at least \(t \). Then for any positive integer \(k \geq 2 \), \(ff^{(k)} \) assumes...
every nonzero finite value infinitely often provided that $t = k + 1$ for $2 \leq k \leq 4$, $t = 5$ for $k = 5$ and $t = 6$ for $k \geq 6$.

N. Steinmetz [15] proved that if f is a transcendental meromorphic function, then $f^n f^{(k)}$ assume every nonzero finite value infinitely often, where $n(\geq 2)$ and k are positive integers.

In 1994 Yik Man Chiang asked the question of value distribution of $ff' - a$, where $a = a(z)(\not\equiv 0, \infty)$ is a small function of f i.e., $T(r,a) = S(r,f)$. In response to this question W. Bergweiler [2] proved the following theorem.

Theorem D. ([2]) Let f be a transcendental meromorphic function of finite order and $a = a(z)(\not\equiv 0)$ be a polynomial. Then $ff' - a$ has infinitely many zeros.

In 2005 I. Lahiri and S. Dewan [10] observed that if $a = bz^n$, n is a nonnegative integer and b is a nonzero constant, then the order restriction on f can be withdrawn. Their result is as follows.

Theorem E. ([10]) Let f be a transcendental meromorphic function. Then $f^n f' - bz^n$ has infinitely many zeros, where $b(\not\equiv 0)$ is a constant and $n(\geq 0)$, $p(\geq 1)$ are integers.

If one considers a small function, then following two results are worth mentioning, which follow from two inequalities proved by Q. D. Zhang [18].

Theorem F. Let f be a transcendental meromorphic function with $\delta(\infty; f) > \frac{7}{9}$. Then $ff' - a$ has infinitely many zeros, where $a = a(z)(\not\equiv 0, \infty)$ is a small function of f.

Theorem G. Let f be a transcendental meromorphic function with $\delta(\infty; f) + 2\delta(0; f) > 1$. Then $ff' - a$ has infinitely many zeros, where $a = a(z)(\not\equiv 0, \infty)$ is a small function of f.

K. W. Yu [17] treated the small function case without imposing any restriction on f. However he had to consider a small function and its negative as a pair of targets. He proved the following theorem.

Theorem H. ([17]) If $a = a(z)(\not\equiv 0, \infty)$ is a small function of a transcendental meromorphic function f, then at least one of $ff' + a$ and $ff' - a$ has infinitely many zeros.

In 2003 I. Lahiri and S. Dewan [9] considered the general order derivative and proved the following result.

Theorem I. (cf. Corollary 1 [9]) Let f be a transcendental meromorphic function and k be a positive integer. Suppose that $F_1 = ff^{(k)} - a$ and $F_2 = ff^{(k)} + a$, where $a = a(z)(\not\equiv 0, \infty)$ is a small function of f. Then $\Theta(0; F_1) + \Theta(0; F_2) \leq 2 - \frac{2}{2k+1}$.

336 Indrajit Lahiri and Rajib Mukherjee
The problem of value distribution of $f^p f^{(k)} - a$ remains open, where f is a transcendental meromorphic function, $a = a(z)(\neq 0, \infty)$ is a small function of f and p, k are positive integers. In the paper we deal with this problem.

We respectively denote by $N_k(r, f)$ and $\overline{N}_k(r, f)$ the counting function and the reduced counting function of those zeros of f which have multiplicities less than or equal to k, where k is a positive integer.

For standard definitions and notations of the value distribution theory we refer the reader to [6].

We now state the main result of the paper.

Theorem 1. Let f be a transcendental meromorphic function and $\alpha = \alpha(z)(\neq 0, \infty)$ be a small function of f such that the zero-pole sets of f and α are disjoint. Suppose that the zeros of f have multiplicity at least t, where $t = \lceil \frac{k+1}{p} \rceil + 1$ if $p \geq 2$, $t = k + 1$ if $p = 1$ and $1 \leq k \leq 4$ and $t = \min\{k, 6\}$ if $p = 1$ and $k \geq 5$. If $F = f^p f^{(k)} - \alpha$, then one of the following holds:

1. $\Theta(0; F) \leq 1 - \frac{p}{k + p + 1}(1 - \frac{k + 1}{pt})$ if $p \geq 2$;
2. $\Theta(0; F) \leq 1 - \frac{k}{4t(k+2)}$ if $p = 1$ and $1 \leq k \leq 4$;
3. $\Theta(0; F) \leq 1 - \frac{(t-4)(k+1) - t}{4t(k+1)(k+2)}$ if $p = 1$ and $k \geq 5$.

2. Lemmas

In this section we state two necessary lemmas. Let f be a transcendental meromorphic function and n, p be positive integers. A differential polynomial P of f is defined by $P(z) = \sum_{k=1}^{n} \phi_k(z)$, where $\phi_k(z) = \alpha_k(z) \prod_{j=0}^{p} (f^{(j)}(z)^{S_{kj}}$, $\alpha_k(z) \neq 0$, S_{kj} are nonnegative integers and $T(r, \alpha_k) = S(r, f)$.

If we suppose only $m(r, \alpha_k) = S(r, f)$, then $P(z)$ is called a quasi-differential polynomial.

The quantities $\overline{d}(P) = \max_{1 \leq k \leq n} \{ \sum_{j=0}^{p} S_{kj} \}$ and $\underline{d}(P) = \min_{1 \leq k \leq n} \{ \sum_{j=0}^{p} S_{kj} \}$ are respectively called the degree and lower degree of $P(z)$. If, in particular, $\overline{d}(P) = \underline{d}(P)$, then $P(z)$ is called homogeneous.

Lemma 1. ([8]) Let f be a transcendental meromorphic function and $P = P(z)$ be a nonconstant differential polynomial in f with $\underline{d}(P) > 1$. Suppose that $Q = \max_{1 \leq k \leq n} \{ \sum_{j=1}^{p} jS_{kj} \}$. Then

$$T(r, f) \leq \frac{Q + 1}{\overline{d}(P) - 1} N(r, 0; f) + \frac{1}{\overline{d}(P) - 1} N(r, 1; P) + S(r, f).$$
Lemma 2. (p.39 [11]) Let f be a nonconstant meromorphic function and Q_1, Q_2 be quasi-differential polynomials in f with $Q_2 \neq 0$. Let n be a positive integer and $f^n Q_1 = Q_2$. If $\overline{d}(Q_2) \leq n$, then $m(r, Q_1) = S(r, f)$.

3. Proof of Theorem 1

First we suppose that $p \geq 2$. We put $P = \frac{1}{\alpha} f^p f^{(k)}$. Then $d(P) = \overline{d}(P) = p + 1$ and $Q = k$. So by Lemma 1 we get

$$T(r, f) \leq \frac{k + 1}{p} N(r, 0; f) + \frac{1}{p} N(r, 1; P) + S(r, f)$$

and so

$$(3.1) \quad p(1 - \frac{k + 1}{pt}) T(r, f) \leq N(r, 1; P) + S(r, f).$$

We note that \{cf. [4], [14]\}

$$(3.2) \quad T(r, f) + S(r, f) \leq CT(r, F) + S(r, F)$$

and

$$(3.3) \quad T(r, F) \leq (k + p + 1) T(r, f) + S(r, f),$$

where C is a nonzero constant.

From (3.2) and (3.3) we see that $S(r, f)$ and $S(r, F)$ are mutually interchangeable. So from (3.1) and (3.3) we get

$$\frac{p}{k + p + 1} (1 - \frac{k + 1}{pt}) T(r, F) \leq N(r, 0; F) + S(r, F).$$

This implies $\Theta(0; F) \leq 1 - \frac{p}{k + p + 1} (1 - \frac{k + 1}{pt})$.

Now we suppose that $p = 1$. Let us put

$$(3.4) \quad F = f f^{(k)} - \alpha$$

and

$$(3.5) \quad a = \frac{f' f^{(k)}}{f^2} f^{(k+1)} - f^{(k+1)} \frac{F'}{F}.$$

Then

$$(3.6) \quad f a = \alpha \frac{f'}{\alpha} - \frac{F'}{F}.$$
Let \(\frac{\alpha'}{\alpha} - \frac{f'}{f} \equiv 0 \). Then on integration we get \(F = c\alpha \), where \(c(\neq 0) \) is a constant. Hence we get from (3.4)

\[
(3.7) \quad ff^{(k)} = (1 + c)\alpha.
\]

Since \(ff^{(k)} \neq 0 \), we have \(1 + c \neq 0 \). From (3.7) we get

\[
(3.8) \quad N(r, 0; f) \leq N(r, 0; \alpha) = S(r, f).
\]

Also from (3.7) we obtain \(\frac{1}{f^2} = \frac{1}{(1 + c)\alpha} \frac{f^{(k)}}{f} \) and so \(m(r, \frac{1}{f^2}) = S(r, f) \). This implies

\[
(3.9) \quad m(r, 0; f) = S(r, f).
\]

From (3.8), (3.9) and the first fundamental theorem we get \(T(r, f) = S(r, f) \), a contradiction. Therefore \(\frac{\alpha'}{\alpha} - \frac{f'}{f} \neq 0 \). So from (3.6) we get by Lemma 2

\[
(3.10) \quad m(r, a) = S(r, f).
\]

Let \(z_1 \) be a pole of \(f \) with multiplicity \(q(\geq 2) \). Then \(z_1 \) is a simple pole of \(\alpha(\frac{\alpha'}{\alpha} - \frac{f'}{f}) \) as \(\alpha(z_1) \neq 0, \infty \) and so \(z_1 \) is a zero of \(\alpha \) with multiplicity \(q - 1 \). Hence

\[
(3.11) \quad N_{(2)}(r, \infty; f) \leq 2N(r, 0; a),
\]

where \(N_{(2)}(r, \infty; f) \) denotes the counting function of multiple poles of \(f \).

Let \(z_2 \) be a zero of \(f \) with multiplicity \(q(\geq k + 1) \). Then \(z_2 \) is a zero of \(F' + \alpha' = f'f^{(k)} + f f^{(k+1)} \) with multiplicity at least \(2q - (k + 1) \).

Since \(F + \alpha = ff^{(k)} \), we see that \(z_2 \) is a zero of \(F + \alpha \) with multiplicity \(2q - k \).

From (3.6) we get \(fa = (F' + \alpha') - \frac{F'(F + \alpha)}{f} \). So \(z_2 \) is a zero of \(fa \) with multiplicity at least \(2q - (k + 1) \). Therefore \(z_2 \) is not a pole of \(a \).

Also from (3.6) we see that a simple pole of \(f \) is not a pole of \(a \). Hence the poles of \(a \) are contributed by the zeros of \(F \) and by zeros of \(f \) with multiplicities less than or equal to \(k \) and the poles of \(\alpha \). Therefore

\[
(3.12) \quad N(r, \infty; a) = \overline{N}(r, \infty; a) \leq \overline{N}_{kj}(r, 0; f) + \overline{N}(r, 0; F) + S(r, f).
\]

By (3.10) and (3.12) we get

\[
(3.13) \quad T(r, a) \leq \overline{N}_{kj}(r, 0; f) + \overline{N}(r, 0; F) + S(r, f).
\]

From (3.6) we obtain

\[
(3.14) \quad m(r, f) \leq m(r, 0; a) + S(r, f)
\]

\[
= T(r, a) - N(r, 0; a) + S(r, f).
\]
Let z_0 be a simple pole of f. Then from (3.6) we see that $a(z_0) \neq 0, \infty$. Now in some neighbourhood of z_0 we get

$$f(z) = \frac{c_1}{z - z_0} + c_0 + O(z - z_0), \quad (3.15)$$

$$a(z) = a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2, \quad (3.16)$$

and

$$\alpha(z) = \alpha(z_0) + \alpha'(z_0)(z - z_0) + O(z - z_0)^2, \quad (3.17)$$

where $c_1 \neq 0$ and $\alpha(z_0) \neq 0, \infty$.

Differentiating (3.15) we get

$$f^{(j)}(z) = \frac{(-1)^j j! c_1}{(z - z_0)^{j+1}} + O(1) \quad \text{for } j = 1, 2, 3, \ldots \quad (3.18)$$

From (3.5) and (3.6) we have

$$af = \alpha f f^{(k)} + a f^{(k+1)} + f^2 f^{(k)} a - \alpha' f f^{(k)}. \quad (3.19)$$

Now by (3.15) – (3.19) we get

$$\begin{align*}
\{a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2\} \{\frac{c_1}{z - z_0} + c_0 + O(z - z_0)\} \\
\{a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2\}
\end{align*}$$

$$= \{a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2\} \left\{\frac{-c_1}{(z - z_0)^2} + O(1)\right\}$$

$$= \left\{\frac{(-1)^k k! c_1}{(z - z_0)^{k+1}} + O(1)\right\} + \{a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2\}$$

$$= \left\{\frac{c_1}{z - z_0} + c_0 + O(z - z_0)\right\} \left\{\frac{(-1)^{k+1} c_1 k + 1)!}{(z - z_0)^{k+2}} + O(1)\right\}$$

$$+ \left\{\frac{c_1}{z - z_0} + c_0 + O(z - z_0)^2\right\} \left\{\frac{(-1)^k k! c_1}{(z - z_0)^{k+1}} + O(1)\right\}$$

$$\{a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2\} - \{a'(z_0) + O(z - z_0)\}$$

$$= \left\{\frac{c_1}{z - z_0} + c_0 + O(z - z_0)\right\} \left\{\frac{(-1)^k k! c_1}{(z - z_0)^{k+1}} + O(1)\right\}. \quad (3.20)$$

Equating the coefficients of $\frac{1}{(z - z_0)^{k+3}}$ and $\frac{1}{(z - z_0)^{k+4}}$ of both sides of (3.20) we respectively get

$$c_1 a(z_0) = \alpha(z_0)(k + 2). \quad (3.21)$$
and

\[\frac{c_0}{c_1} = \frac{\alpha'(z_0)}{\alpha(z_0)} - \frac{(k + 2)a'(z_0)}{(k + 3)a(z_0)}. \]

From (3.15) we have

\[\frac{f'}{f} = \frac{-1}{z - z_0} + \frac{c_0}{c_1} + O(z - z_0). \]

Also from (3.6) we obtain

\[\alpha \left(\frac{\alpha'}{\alpha} - \frac{F'}{F} \right) = fa \]

\[= \left\{ \frac{c_1}{z - z_0} + c_0 + O(z - z_0) \right\} \left\{ a(z_0) + a'(z_0)(z - z_0) + O(z - z_0)^2 \right\} \]

\[= c_1a(z_0) \left\{ \frac{1}{z - z_0} + \frac{c_0}{c_1} + \frac{a'(z_0)}{a(z_0)} \right\} + O(z - z_0). \]

From (3.21) – (3.24) we get in some neighbourhood of \(z_0 \)

\[\alpha \left(\frac{\alpha'}{\alpha} - \frac{F'}{F} \right) = \alpha(z_0)(k + 2) \left\{ \frac{2a'(z_0)}{\alpha(z_0)} - \frac{f'}{f} - \frac{(k + 1)a'(z_0)}{(k + 3)a(z_0)} \right\} + O(z - z_0). \]

Let

\[h = (k + 2)\frac{f'}{f} - \frac{F'}{F} - \frac{(2k + 3)\alpha'}{\alpha} + \frac{(k + 1)(k + 2)a'}{(k + 3)a}. \]

First we suppose that \(h(z) \equiv 0 \). Then on integration we get

\[f^{(k+2)(k+3)}a^{(k+1)(k+2)} = A\alpha^{(2k+3)(k+3)}F^{k+3}, \]

where \(A(\neq 0) \) is a constant.

Let \(z_3 \) be a zero of \(f \) with multiplicity \(p(\geq 1) \). Then from (3.27) we see that \(z_3 \) is a pole of \(a \) with multiplicity \(q \) such that \((k + 2)(k + 3)p = (k + 1)(k + 2)q \) and so \(q = \frac{k + 3}{k + 1}p > 1 \). This is impossible because from (3.5) we see that a zero of \(f \) is at most a simple pole of \(a \). Hence \(f \) has no zero. Since a zero of \(F \) is a possible pole of \(a \) and \(f \) has no zero, we have from (3.27) \(\overline{N}(r, 0; F) = S(r, f) \). Therefore from (3.13) we get

\[T(r, a) = S(r, f). \]
Now by the first fundamental theorem we get

\[N(r, 0; f^{(k)}) = N(r, 0; \frac{f^{(k)}}{f}) \]

\[\leq T(r, \frac{f^{(k)}}{f}) + O(1) \]

\[= N(r, \frac{f^{(k)}}{f}) + S(r, f) \]

\[= kN(r, \infty; f) + S(r, f) \]

\[= N(r, \infty; f^{(k)}) - N(r, \infty; f) + S(r, f). \]

(3.29)

From (3.5) we obtain

\[\frac{1}{f^{(k)}} = \frac{1}{a} \left(\frac{f'}{f} + \frac{f^{(k+1)}}{f} - \frac{F'}{F} \right) \]

and so in view of (3.28) we get \(m(r, 0; f^{(k)}) = S(r, f) \). Hence by the first fundamental theorem we get

\[T(r, f^{(k)}) = N(r, 0; f^{(k)}) + S(r, f). \]

(3.30)

From (3.29) and (3.30) we see that

\[N(r, \infty; f) = S(r, f). \]

(3.31)

So from (3.14), (3.28) and (3.31) we get

\[T(r, f) \leq T(r, a) - N(r, 0; a) + S(r, f) = S(r, f), \]

a contradiction.

Let \(h(z) \neq 0 \). Then from (3.25) we see that \(h(z_0) = 0 \). Hence

\[N_1(r, \infty; f) \leq N(r, 0; h) \leq T(r, h) + O(1) = N(r, h) + m(r, h) + O(1) = N(r, h) + S(r, f). \]

(3.32)

The possible poles of \(h \) are (i) zeros and poles of \(\alpha \), (ii) zeros and poles of \(a \), (iii) zeros and poles of \(f \) and (iv) zeros and poles of \(F \). We further note that

(I) A pole of \(F \) is either a pole of \(f \) or a pole of \(\alpha \) or of both;

(II) A zero of \(f \) with multiplicity \(\geq k + 2 \) is a zero of \(a \). Also a zero of \(f \) with multiplicity \(k + 1 \) is a nonzero regular point of \(a \);

(III) A simple pole of \(f \) is a zero of \(h \) and a multiple pole of \(f \) is a zero of \(a \);

(IV) A zero of \(F \), which is not a zero or a pole of \(\alpha \), is a pole of \(a \).
Let z_4 be a zero of f with multiplicity k. Then $F(z_4) \neq 0, \infty$ and $f^{(k)}(z_4) \neq 0, \infty$. Then from (3.5) we see that z_4 is a simple pole of a. Therefore we have

\begin{equation}
N(r,h) \leq N(r,0; a) + N(r,\infty; a) + N_{k-1}(r,0; f) + N_{k+1}(r,0; f) + S(r,f),
\end{equation}

where $N_{k+1}(r,0; f)$ denotes the reduced counting function of those zeros of f which have multiplicity exactly equal to $k+1$.

Now considering (3.11), (3.13), (3.14), (3.32) and (3.33) we get

\begin{align*}
T(r,f) &= m(r,f) + N_1(r,\infty; f) + N_2(r,\infty; f) \\
&\leq T(r,a) - N(r,0; a) + 2N(r,0; a) + N(r,0; a) \\
&\quad + N(r,\infty; a) + N_{k-1}(r,0; f) + N_{k+1}(r,0; f) + S(r,f) \\
&\leq 4T(r,a) + N_{k-1}(r,0; f) + N_{k+1}(r,0; f) + S(r,f) \\
&\leq 4N_k(r,0; f) + N_{k-1}(r,0; f) + N_{k+1}(r,0; f) + 4N(r,0; F) + S(r,f).
\end{align*}

Let $1 \leq k \leq 4$. then from (3.34) and (3.3), for $p = 1$, we get by the hypothesis

\begin{align*}
T(r,f) &\leq \frac{1}{k+1}T(r,f) + 4N(r,0; F) + S(r,F) \quad \text{and so} \quad \frac{1}{k+1}(1 - \frac{1}{k+1})T(r,F) \leq 4N(r,0; F) + S(r,F). \quad \text{This implies} \quad \Theta(0; F) \leq 1 - \frac{k}{4(k+1)(k+2)}.
\end{align*}

Next let $k \geq 5$. Then from (3.34) and (3.3), for $p = 1$, we get by the hypothesis

\begin{align*}
T(r,f) &\leq \frac{4}{t}T(r,f) + \frac{1}{k+1}T(r,f) + 4N(r,0; F) + S(r,F) \quad \text{and so} \quad \frac{1}{k+1}(1 - \frac{4}{t})T(r,F) \leq 4N(r,0; F) + S(r,F). \quad \text{This proves the theorem.}
\end{align*}

\begin{flushright}
\Box
\end{flushright}

References

