DOI QR코드

DOI QR Code

대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control

  • Won, Yang-Soo (Department of Environmental Engineering, Yeungnam University) ;
  • Jo, Wan-Keun (Department of Environmental Engineering, Kyungpook National University)
  • 투고 : 2014.09.02
  • 심사 : 2015.03.06
  • 발행 : 2015.08.01

초록

대기오염물질처리를 위한 생물살수여과법에서 물질전달현상을 이해하기 위한 선행 실험결과를 기초로 각각의 운전조건에서 기체/액체(살수액), 기체/고체(미생물)와 액체/고체에서의 model을 이용하여 물질전달계수를 평가하였다. 생물살수여과법에서 기/액에서는 정상상태물질수지, 그리고 액/고와 기/고에서는 동적물질수지를 이용하여 물질전달 model을 확립하고 그 결과를 고찰하였다. 물질전달 model은 여과탑을 일정크기 구획하여, 각 구획에서 동적 물질수지식을 수치해석 전산코드를 이용해 계산하였다. 동적물질수지식을 이용하여 계산된 결과는 실험결과와 비교하여 생물살수여과법에서 기/액, 기/고, 액/고 각상간의 물질전달계수($K_La$)를 산정하였다. 본 연구에서는 대기오염제어를 위한 생물살수여과법에서 물질전달계수를 결정하기 위한 실험방법개발과 model을 이용하여 물질전달현상을 고찰하였다.

A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

키워드

참고문헌

  1. Devinny, J. S. Deshusses, M. A. and Webster, T. S., Biofiltration for Air Pollution Control, Lewis publisher, NY(2011).
  2. Won, Y. S. and Deshusses, M. A., "Technology of VOC Removal in Air by Biotrickling Filter," J. Korean Soc. Atmo, Environ., 19(1), 101-112(2003).
  3. Kosteltz, A. M., Finkelstein, A. and Sears, G., "Characterization of Biofiltration System Degrading VOCs," Paper #96-RA87B.02, Air & Waste Manage. Assoc. 89th Annual Conference and Exhibition, Pittsburgh, PA(1996).
  4. Won, Y. S., "Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control," J. Korean Ind. Eng. Chem., 16(4), 474-484(2005).
  5. Deshusses, M. A. and Cox, H. H. J., Encyclopaedia Environmental Microbiology, McGraw Hill, NY(2012).
  6. Won, Y. S. and Jo, W. K., "Experimental Evaluation Method of Mass Transfer Cofficient on Biotrickling Filter for Air Pollution Control," Korean Chem. Eng. Res., 53(4), 482-488(2015). https://doi.org/10.9713/kcer.2015.53.4.482
  7. Kennes, C. and Veiga, M. C., Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers, Boston(2012).
  8. Zhu, X. Alonso, C. and Suidan, M. T., "The Effect of Liquid Phase on VOC Removal in Trickle-Bed Biofilters," Water. Sci. Technol., 38(3), 315-322(1998). https://doi.org/10.1016/S0273-1223(98)00557-5
  9. Zhu, X., Suidan, M. T. and Alonso, C., "Biofilm Structure and Mass Transfer in a Gas Phase Trickle-Bed Biofilter," Water. Sci. Technol., 43(1), 285-293(2001).
  10. Pedersen, A. R. and Arvin, E., "Effect of Biofilm Growth on Gas-Liquid Mass Transfer in a Trickling Filter for Waste Gas Treatment," Water Res., 31(8), 1963-1968(1997). https://doi.org/10.1016/S0043-1354(97)00056-0
  11. Pedersen, A. R. and Arvin, E., "Toluene Removal in a Biofilm Reactor for Waste Gas Treatment," Water. Sci. Technol., 36(1), 69-76(1997). https://doi.org/10.1016/S0273-1223(97)00324-7
  12. Alonso, C., Zhu, X., Suidan, M. T., Kim, B. R. and Kim, B. J., "Mathmatical Model for Biodegradation of VOCs in Trickle Bed Biofilters," Water. Sci. Technol., 39(7), 139-146(1999). https://doi.org/10.1016/S0273-1223(99)00161-4
  13. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of Biofilters for Waste Air Biotreatment. I. Dynamic Model Development," Environ. Sci. Technol., 29, 1048-1058(1995). https://doi.org/10.1021/es00004a027
  14. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of Biofilters for Waste Air Biotreatment. II. Experimental Evaluation of Dynamic Model," Environ. Sci. Technol., 29, 1059-1068(1995). https://doi.org/10.1021/es00004a028
  15. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Transient-State Behavior of Biofilter Removing Mixtures Vapors of MEK and MIBK from Air," Biotechnol. Bioeng., 49, 587-598(1996). https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<587::AID-BIT12>3.3.CO;2-U
  16. Zarook, S. M., Shaikh, A. A. and Ansar, Z., "Biofiltration of VOC Mixtures under Transient Condition," Chem. Eng. Sci., 52(21), 4135-4142(1997). https://doi.org/10.1016/S0009-2509(97)00256-X
  17. Shareefdeen, Z. and Baltzis, B. C., "Biofiltration of Mathanol vapor," Biotechnol., Bioeng., 41, 512-524(1993). https://doi.org/10.1002/bit.260410503
  18. Baltzis, B. C., Mpanias, C. J. and Bhattacharya, S., "Modeling Removal of VOC Mixtures in Biotrickling Filters," Biotechnol. Bioeng., 72(4), 389-401(2001). https://doi.org/10.1002/1097-0290(20000220)72:4<389::AID-BIT1001>3.0.CO;2-#
  19. Zarook, S. M., Shaikh, A. A. and Ansar, Z., "Development Experimental Validation and Dynamic Analysis of a General Transient Biofilter Model," Chem. Eng. Sci., 52(5), 759-773(1997). https://doi.org/10.1016/S0009-2509(96)00428-9
  20. Berkeley Madonna(Version 8.0) User's Guide, UC Berkeley(2001).
  21. Won, Y. S., "Comparison for Thermal Decomposition and Product Distribution of Chloroform under Each Argon or Hydrogen Reaction Atmosphere," Korean J. Chem. Eng., 29(12), 1745-1751(2012). https://doi.org/10.1007/s11814-012-0086-0
  22. Won, Y. S., "Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere," Korean Chem. Eng. Res., 49(5), 510-515(2011). https://doi.org/10.9713/kcer.2011.49.5.510