DOI QR코드

DOI QR Code

Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor

  • Nam, Hyobin (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Woong (School of Materials Science and Engineering, Changwon National University)
  • Received : 2015.05.21
  • Accepted : 2015.07.02
  • Published : 2015.07.27

Abstract

The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some $sp-sp^2$ linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.

Keywords

References

  1. K. S. Novoselov1, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
  2. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature, 490, 192 (2012). https://doi.org/10.1038/nature11458
  3. D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Nature Naotech., 3(2), 101 (2008). https://doi.org/10.1038/nnano.2007.451
  4. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, ACS Nano, 2(3), 463 (2008). https://doi.org/10.1021/nn700375n
  5. P. W. Sutter, J. -I. Flege and E. A. Sutter, Nature Mater., 7(5), 406 (2008). https://doi.org/10.1038/nmat2166
  6. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature, 457(7230), 706 (2009). https://doi.org/10.1038/nature07719
  7. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, b. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Nature Nanotech., 5(8), 574 (2010). https://doi.org/10.1038/nnano.2010.132
  8. A. Dato, V. Radmilovic, Z. Lee, J. Phillips and M. Frenklach, Nano Lett., 8(7), 2012 (2008). https://doi.org/10.1021/nl8011566
  9. F. Liu and Y. Zhang, Carbon, 48(9), 2394 (2010). https://doi.org/10.1016/j.carbon.2010.02.033
  10. G. Kalita, M. Matsushima, H. Uchida, K. Wakita and M. Umeno, J. Mater. Chem., 20(43), 9713 (2010). https://doi.org/10.1039/c0jm01352h
  11. S. -K. Jerng, D. S. Yu, J. H. Lee, C. Kim, S. Yoon and S. -H. Chun, Nanoscale Res. Lett., 6(10), 565 (2011) https://doi.org/10.1186/1556-276X-6-565
  12. A. C. Ferrari and J. Robertson, Phys. Rev. B, 64(9), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414
  13. A. Ferrari1 and D. M. Basko, Nature Nanotechnol., 8(4), 235 (2013). https://doi.org/10.1038/nnano.2013.46
  14. P. K. Chu and L. Li, Mater. Chem. Phys., 96(2-3), 253 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.048
  15. Q. Wang, D. D. Allred and L. V. Knight, J. Raman Spectrosc., 26(12), 1039 (1995). https://doi.org/10.1002/jrs.1250261204
  16. Ramya, K. J. John and B. Manoj, Int. J. Electrochem. Sci., 8(7), 9421 (2013).
  17. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen and J. T. L. Thong, Small, 6(2), 195 (2010). https://doi.org/10.1002/smll.200901173
  18. B. P. Vinayan, N. I. Schwarzburgera and M. Fichtner, J. Mater. Chem. A, 3(13), 6810 (2015). https://doi.org/10.1039/C4TA05642F
  19. C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Hong, Q. -H. Wu, F. Gao, C. -S. Lee and W. Zhang, Nanoscale, 5(2), 600 (2013). https://doi.org/10.1039/C2NR32897F
  20. V. N. Popov and P. Lambin, Phys. Rev. B, 88(7), 075427 (2013). https://doi.org/10.1103/PhysRevB.88.075427
  21. J. Wang, S. Zhang, J. Zhou, R. Liu, R. Du, H. Xu, Z. Liu, J. Zhang and Z. Liu, Phys. Chem. Chem. Phys., 16(23), 11303 (2014). https://doi.org/10.1039/c4cp00539b
  22. G. Jo, M. Choe, S. Lee, W. Park, Y. Ho. Kahng and T. Lee, Nanotechnol., 23(11), 112001 (2012). https://doi.org/10.1088/0957-4484/23/11/112001