DOI QR코드

DOI QR Code

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment

염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구

  • Kim, Dongbaek (Department of Civil, Safety&Environmental Engineering, Hnakyeong National University) ;
  • Kwon, Soondong (Department of Civil, Safety&Environmental Engineering, Hnakyeong National University) ;
  • An, Kwanghee (Department of Civil, Safety&Environmental Engineering, Hnakyeong National University)
  • Received : 2015.06.01
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

콘크리트에 발생하는 균열은 구조물의 진행성 파괴로 연결되어 구조물의 안전성에 직결되는 문제이며, 철근콘크리트 구조물에 발생한 균열은 사용성 뿐만 아니라 유해물질의 침입에 따른 열화를 촉진하여 내구성 문제와 직결된다. 특히 외부 염화물 이온의 침입에 따라 철근에 발생하는 부식은 철근콘크리트 구조물의 안전성에도 큰 영향을 미친다. 따라서, 콘크리트의 균열을 제어하기 위해 초기재령 콘크리트에서의 수화, 수분이동을 규명하여 안전성 및 내구성을 확보하기 위해 허용 균열폭을 합리적으로 산정하는 방법이 필요하다. 본 연구에서는 철근콘크리트 구조물의 철근부식에 영향을 미치는 영향인자를 분석하고 부식영향인자의 변화에따른 부식의 정도를 파악할 수 있는 철근콘크리트 보를 제작하여 실험을 실시한다. 이러한 실험의 결과를 이용하여 부식영향인자를 고려한 허용 균열폭에 대한 식을 제안한다.

Keywords

References

  1. ACI Committee 222, "Debate: Cracks, Cover and Corrosion," Concrete International, May, pp. 20-35, 1985.
  2. ASTM Committee C-9, "Standard Test Method for Half Cell Potentials of Uncoated Reinforcing Steel in Concrete," Annual Book of ASTM Standard, Vol. 03, pp. 434-439, 1991.
  3. Aldea, C.M., Shah, S.P., and Karr, A., "Effect of Cracking on Water and Chloride Permeability of Concrete", Journal of Materials in Civil Engineering, Vol. 11, No. 3, pp. 181-186, 1999. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(181)
  4. Aldea, C. M., Ghandehari, M., Shah, S. P., and Karr, A., "Estimation of Water Flow Through Cracked Concrete Under Load," ACI Materials Journal, Vol. 97, No. 5, pp. 567-575, 1999.
  5. Andrade, C., "Calculation of Chloride Diffusion Coefficients in Concrete From Ionic Migration Measurements", Cement and Concrete Research, Vol. 23, No. 5, pp. 724-742, 1993. https://doi.org/10.1016/0008-8846(93)90023-3
  6. CEB/FIP, Model Code 1990, Comite Euro-International du Beton, 1990.
  7. Chatterji, S., "Transportation of Ions Through Cement-Based Materials. Part 1-Fundamental Equations and Basic Measurement Techniques," 2003
  8. Korea Concrete Standard Specification, W/C Strength Relative Equation, 2009
  9. Japan Architectural Standard specification, W/C Strength Relative Equation, 2010

Cited by

  1. Estimation of Service Life for Expressway Bridge Subjected to Chloride Ingress from De-icer vol.11, pp.4, 2015, https://doi.org/10.15683/kosdi.2015.11.4.548