DOI QR코드

DOI QR Code

시설 고추에 발생하는 흰가루병의 경제적 방제수준에 따른 고추수확량 변화 예측

Yield Loss Assessment and Determination of Control Thresholds for Powdery Mildew of Chili pepper (Capsicum annuum L)

  • 김주희 (전북농업기술원 기후변화대응과) ;
  • 정성수 (전북농업기술원 기후변화대응과) ;
  • 이기권 (전북농업기술원 기후변화대응과) ;
  • 임주락 (전북농업기술원 기후변화대응과) ;
  • 심홍식 (국립농업과학원 작물보호과) ;
  • 이왕휴 (전북대학교 농생물학과)
  • Kim, Ju-Hee (Division of Climate Change, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Cheong, Seong-Soo (Division of Climate Change, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Lee, Ki-Kwon (Division of Climate Change, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Yim, Ju-Rak (Division of Climate Change, Jeollabuk-do Agricultural Research and Extension Services) ;
  • Shim, Hong-Sik (Crop Protection Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Wang-Hyu (Department of Agricultural Biology, Chonbuk National University)
  • 투고 : 2015.03.25
  • 심사 : 2015.06.23
  • 발행 : 2015.06.30

초록

고추 흰가루병이 수량에 미치는 영향을 조사하여 경제적 방제수준을 설정하고자 시험을 수행하였다. 고추 흰가루병의 발병 정도에 따른 수량의 변화에 대한 분석은 병발생을 10단계 수준으로 구분하여 시험을 실시하였다. 흰가루병 발생수준과 과장, 과경, 과중은 부의 상관관계를 형성하였으며, 발생이 증가함에 따라 수량이 감소하여 유의한 부의 상관관계가 형성되었다. 시설고추 흰가루병 발생 정도와 수량과의 회귀식은 천하통일과 부촌품종이 각각 Y = -2.136X+327.9 $R^2=0.76$, Y = -3.44X+291.1 $R^2=0.73$ 성립되었으며, 시설고추 흰가루병 발생 정도와 수량 손실량과의 회귀식은 천하통일과 부촌품종이 각각 Y = 2.14X+15.45 $R^2=0.76$ $r=0.87^{**}$ Y = 3.44X+11.21 $R^2=0.73$ $r=0.85^{**}$ 성립되었다. 따라서 시설 고추 수량에 영향을 주지 않는 수준의 흰가루병 방제 적기는 발생 병반면적률이 3.2~7.3% 이하 이었으며. 고추 흰가루병 경제적 방제수준은 시설 고추 흰가루병 발생 정도가 3.8~6.2% 이하 일 때 방제를 시작하면 방제횟수를 절감 하면서 효율적인 방제를 할 수 있다.

This study was carried out to develop the economic thresholds for powdery mildew on pepper. To investigate the relationship between powdery mildew incidence degree and yield, experimental plots with ten treatments as initial disease degree were established. Disease intensity exhibited negative and significant correlation with fruit characters like fruit length, fruit diameter, fruit weight. The adverse effect of the disease on these characteristics was low yield, exhibiting significant negative correlation with disease intensity. There existed close correlation between rate of infected leaf area and yields in the plastic house (Chonhatongil: Y = -3.44X+291.09 $R^2=0.73$, Buchon: Y = -2.14X+327.9 $R^2=0.78$). There existed close correlation between rate of infected leaf area and yield loss in the plastic house (Chonhatongil: Y = 2.14X+15.45 $R^2=0.76$ $r=0.87^{**}$, Buchon: Y = 3.44X+114.21 $R^2=0.73$ $r=0.85^{**}$). Control thresholds diseased rate on powdery mildew of pepper was below 3.2 to 7.3% rate of infected leaf area per plant in the plastic house. The economic thresholds for powdery mildew of pepper was below 3.8 to 6.2% rate of infected leaf area per plant in the plastic house.

키워드

참고문헌

  1. Asari, H. H. and Y Nakazawa (1994) Current status in sensitivity of Sphaerotheca fuliginea to DMIs in Kanto-Tosan District, Japan. Proceedings of the Kanto Tosan Plant Protection. 69-75.
  2. Cha, J. S., U. K. Ki, B. H. Cho and K. C. Kim (1980) A new disease, Powdery mildew, caused by Oidiopsisi taurica on Capsicum spp. Kor. Plant Proc. 19:241-243. (In Korean)
  3. Cho, M. C., Y. H. Om, D. H. Kim, Y. C. Heo, J. S. Kim and H. G. Park (2005) Breeding for powdery mildew resistant varieties in Cucurbita moschata. Res. in Plant Dis. 11:106-114. (In Korean) https://doi.org/10.5423/RPD.2005.11.2.106
  4. Deep, R. S. and S. Moly (2002) Influence of fungicidal spray on powdery mildew epidemics and major yield attributing characters of mung bean. Plant Pathol. J. 18(2):68-73. https://doi.org/10.5423/PPJ.2002.18.2.068
  5. Edwards, H. H. and P. J. Allen (1965) Distribution of the products of photosynthesis between powdery mildew and barely. Plant Physiol. 41:683-688.
  6. Kang, S. W., J. H. Kwon, W. K. Shin and H. K. Kim (1995) Occurrence of powdery mildew on tomato caused by Oidiopsis taurica. Kor. J. Plant Pathol. 11:380-382. (In Korean)
  7. Kim, J. Y., S. S. Hong, J. K. Lee, K. Y. Park, H. K. Kim and J. W. Kim (2006) Determinants economic threshold of powdery mildew on cucumber. Res. in Plant Dis. 12:231-234. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.231
  8. Kwon, J. H., S. W. Kang, D. J. Cho and H. K. Kim (1998) Occurrence of powdery mildew on eggplant caused by Leveillula taurica Arnaud. Kor. J. Plant Pathol. 14:186-187. (In Korean)
  9. Lee, O. H., H. S. Hwang, J. Y. Kim, J. H. Han, Y. S. Yoo and B. S. Kim (2001) Selecting materials resistant to powdery mildew in Capsicum Pepper. Kor. J. of Horti. Sci. & Tech. 19(1):7-11.
  10. Magyarosy, A. C., P. Schurmann and B. B. Buchanan (1976) Effect of powdery mildew infection on photosynthesis by leaves and chloroplasts of sugar beets. Plant Physiol. 57:486-489. https://doi.org/10.1104/pp.57.4.486
  11. National Academy of Agricultural Science (2003) Determinant of economic injury level workshop. National Academy of Agricultural Science. Suwon, Korea. 39pp. (In Korean)
  12. Rural Development Administration. (2001) Pepper cultivation method. Rural Development Administration. Suwon, Korea. 261pp. (In Korean)
  13. Rural Development Administration (2003) Research and survey guideline of agricultural science technology. Rural Development Administration. Suwon, Korea. 838pp. (In Korean)
  14. Rural Development Administration. (2005) Report on Agricultural and livestock production for agricultural management improvement 2004. Rural Development Administration. Suwon, Korea. 161pp. (In Korean)
  15. Pedigo, L. P. (1996) General models of economic thresholds, pp. 41-57. In L.G. Higley and L.P. Pedigo (eds.), Economic thresholds for integrated pest management. University of Nebraska Press, Lincoln.
  16. Verhaar, M. A. and T. Hijwegen (1993) Efficient production of phialoconidia of Verticillium lecanii for biocontrol of cucumber powdery mildew Sphaerotheca fuliginea. Neth. J. Pathol. 99:101-103. https://doi.org/10.1007/BF01998478

피인용 문헌

  1. Yield Loss Assessment and Determination of Control Thresholds for Powdery Mildew of Eggplant (Solanum melongena) vol.20, pp.2, 2016, https://doi.org/10.7585/kjps.2016.20.2.145
  2. IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼 vol.12, pp.6, 2015, https://doi.org/10.17661/jkiiect.2019.12.6.672