DOI QR코드

DOI QR Code

Chlor-alkali Membrane Process and its Prospects

클로알칼리 멤브레인법과 전망

  • Park, In Kee (Department of Energy Engineering, Dankook University) ;
  • Lee, Chang Hyun (Department of Energy Engineering, Dankook University)
  • 박인기 (단국대학교 에너지공학과) ;
  • 이창현 (단국대학교 에너지공학과)
  • Received : 2015.06.11
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.

클로알칼리(CA) 멤브레인법은 이온전도성 고분자전해질을 이용한 염수전기분해공정을 의미하며, 전통적으로는 가성소다와 염소 생산을 목적으로 하고 있다. CA 멤브레인법은 기존 클로알칼리 공정으로 사용되어왔던 수은법 및 격막법에 비해 환경적 유해성이 낮으며, 에너지비용을 상당히 감소시킬 수 있다는 장점을 나타낸다. 본 총설에서는 멤브레인법의 기본개념 및 특징, 핵심기술에 관한 내용을 다루고자 한다. 또한 높은 에너지비용을 갖는 염수전기분해에 대한 에너지 절감효과를 달성하기 위한 시스템 집적화기술, 산소탈분극전극 기술과 이종 기술과의 하이브리드를 통한 고도 CA 시스템기술의 예로서의 이산화탄소 직접전환기술에 대해 논할 것이다. 마지막으로, 멤브레인법에 기반한 국내외 CA 기술동향을 소개할 것이다.

Keywords

References

  1. P. W. Harben, "The industrial minerals handybook: a guide to markets, specifications, & prices", pp. 25-30, Metal Bulletin PLC (1999).
  2. K. Greenwood and M. Pearce, "The removal of carbon dioxide from atmospheric air by scrubbing with caustic soda in packed towers", Trans. Inst. Chem. Engrs., 31, 201 (1953).
  3. K. M. Porter and K. C. Varshney, "Interfacial areas and liquid-film mass transfer co-efficients of a 3 ft diameter bubble cap plate derived from absorption rates of $CO_{2}$ into water and caustic soda solution", Trans. Inst. Chem. Engrs., 44, 274 (1966).
  4. S. Hazen, F. Hsu, D. Mueller, J. Crowley, and J. Heinecke, "Human neutrophils employ chlorine gas as an oxidant during phagocytosis", J. Clin. Invest., 98, 1283 (1996). https://doi.org/10.1172/JCI118914
  5. http://hcc.hanwha.com/business/bus_hwaseong.jsp.
  6. http://www.cmaiglobal.com/marketing/samples/cmr_ summary.pdf.
  7. B. K. Lahl, U. Duszeln, J. V. Gabel, and B. Stachel, "Distribution and balance of volatile halogenated hydrocarbons in the water and air of covered swimming pools using chlorine for water disinfection", Water Res., 15, 803 (1981). https://doi.org/10.1016/0043-1354(81)90133-0
  8. S. Kelly and W. W. Sanderson, "The effect of chlorine in water on enteric viruses", Am. J. Public Health., 48, 1323 (1958). https://doi.org/10.2105/AJPH.48.10.1323
  9. J. R. Caldwell and J. W. Jackson, "High modulus polyester and polycarbonate compositions", US Patent 3,625,877, January 1 (1968).
  10. A. Reinstaller, "Policy entrepreneurship in the co-evolution of institutions, preferences, and technology: comparing the diffusion of totally chlorine free pulp bleaching technologies in the US and sweden", Res. Policy., 34, 1366 (2005). https://doi.org/10.1016/j.respol.2005.06.001
  11. D. S. Varma and A. J. Kondapalli, "A comparative study of the thermal behavior of PVC, a series of synthesized chlorinated polyethylenes and HDPE", Polym. Degrad. Stab., 63, 1 (1999). https://doi.org/10.1016/S0141-3910(98)00051-2
  12. C. S. Macedo, R. A. Frederique, R. T. Andre, P. A. Melquizedeque, B. Z. Luiz, F. R. Joel, and C. S. Paulo, "New heterogeneous metal-oxides based catalyst for vegetable oil trans-esterification", J. Braz. Chem. Soc., 17, 1291 (2006).
  13. J. Moorhouse, "Modern chlor-alkali technology", PP. 45-90, John Wiley & Sons, New York, NY (2008).
  14. T. F. O'Brien, T. V. Bommaraju, and F. Hine, "Handbook of chlor-alkali technology: volume i: fundamentals", pp. 18-27, Springer Science & Business Media (2007).
  15. http://www.eurochlor.org/media/10663/sustainable_ development_progress_report_august_2007.pdf.
  16. http://www.eurochlor.org/media/9385/3-2-the_european_ chlor-alkali_industry_-_an_electricity_intensive_ sector_exposed_to_carbon_leakage.pdf.
  17. M. S. Landis, K. J. Gerald, A. W. Khalid, and I. S. Robert, "Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition", Atmos. Environ., 38, 613 (2004). https://doi.org/10.1016/j.atmosenv.2003.09.075
  18. M. Lodenius and T. Esa, "Environmental mercury contamination around a chlor-alkali plant", Bull. Environ. Contam. Toxicol., 32, 439 (1984). https://doi.org/10.1007/BF01607520
  19. D. Bergner, "Membrane cells for chlor-alkali electrolysis", J. Appl. Electrochem., 12, 631 (1982). https://doi.org/10.1007/BF00617483
  20. M. Seko, "The ion-exchange membrane, chlor-alkali process", Ind. Eng. Chem. Prod. Res. Dev., 15, 286 (1976). https://doi.org/10.1021/i360060a013
  21. M. Sugiyama, K. Saiki, A. Sakata, H. Aikawa, and N. Furuya, "Accelerated degradation testing of gas diffusion electrodes for the chlor-alkali process", J. Appl. Electrochem., 33, 929 (2003). https://doi.org/10.1023/A:1025899204203
  22. http://www.sensorprod.com/news/white-papers/aca/wp_ aca.pdf.
  23. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", J. Membr., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  24. A. Eisenberg and H. L. Yeager, "Perfluorinated ionomer membranes", J. Am. Chem. Soc., 180, 30 (1982).
  25. H. Y. Lee, H. Hwang, S. Park, S. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", J. Membr., 20, 40 (2010).
  26. http://www.kosen21.org/work/03_information/0302_ gtbReports/board_kosencollect_detailview.jsp?bid= 761699.
  27. D. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", J. Membr., 22, 155 (2012).
  28. P. Hayfield, "Development of the noble metal/ oxide coated titanium electrode", Platinum Met. Rev., 42, 46 (1998).
  29. F. Hine, M. Yasuda, and T. Yoshida, "Studies on the oxide‐coated metal anodes for chlor‐alkali cells", J. Electrochem. Soc., 124, 500 (1977). https://doi.org/10.1149/1.2133337
  30. G. Faita and F. Federico, "Electrolysis cell with gas diffusion electrode", US Patent 7,670,472, March 2 (2010).
  31. S. Trasatti, "Electrocatalysis: understanding the success of DSA(R)", Electrochim. Acta., 45, 2377 (2000). https://doi.org/10.1016/S0013-4686(00)00338-8
  32. Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, "Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes", J. Appl. Electrochem., 40, 1789 (2010). https://doi.org/10.1007/s10800-010-0137-3
  33. Z. X. Zhang and J. H. Zhang, "Study on electrochemical performance of the titanium electrode coated with $IrO_{2}$.$Ti_{2}O_{5}$", J. Guangdong Non ferr. Met., 2, 3 (2004).
  34. S. Fiameni, I. Herraiz-Cardona, M. Musiani, V. Perez-Herranz, L. Vazquez-Gómez, and E. Verlato, "The HER in alkaline media on Pt-modified three-dimensional Ni cathodes", Int. J. Hydrogen Energy., 37, 10507 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.100
  35. J. Jorne and J. F. Louvar, "Gas‐diverting electrodes in the chlor‐alkali membrane cell", J. Electrochem. Soc., 127, 298 (1980). https://doi.org/10.1149/1.2129659
  36. A. Bulan, R. Weber, and M. Weis, "Process for producing transport-and storage-stable oxygen-consuming electrodes", US Patent 251,328, November 3 (2011).
  37. C. W. Walton and R. E. White, "Utility of an empirical method of modeling combined zero gap/attached electrode membrane chlor‐alkali cells", J. Electrochem. Soc., 134, 565 (1987). https://doi.org/10.1149/1.2100894
  38. L. Lipp, S. Gottesfeld, and J. Chlistunoff, "Peroxide formation in a zero-gap chlor-alkali cell with an oxygen-depolarized cathode", J. Appl. Electrochem., 35, 1015 (2005). https://doi.org/10.1007/s10800-005-7340-7
  39. D. Morris, "Energy analysis and cumulative energy consumption of complex chemical process", Chem. Eng. Sci., 40, 459 (2009).
  40. R. J. Gilliam, B. K. Boggs, V. Decker, M. A. Kostowskyj, S. Gorer, T. A. Albrecht, J. D. Way, D. W. Kirk, and A. J. Bard, "Low voltage electrochemical process for direct carbon dioxide sequestration", J. Electrochem. Soc., 159, 627 (2012). https://doi.org/10.1149/2.033206jes
  41. I. Moussallem, J. Jorissen, U. Kunz, S. Pinnow, and T. Turek, "Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects", J. Appl. Electrochem., 38, 1177 (2008). https://doi.org/10.1007/s10800-008-9556-9
  42. H. Burney, "Membrane chlor-alkali process", PP. 393-394, Springer, New York, NY (1993).
  43. E. Joudaki, F. Farzami, V. Mahdavi, and S. J. Hashemi, "Performance evaluation of oxygen‐depolarized cathode with PtPd/C electrocatalyst layer in advanced chlor‐alkali cell", Chem. Eng. Technol., 33, 1525 (2010). https://doi.org/10.1002/ceat.201000053
  44. J. Petersen, J. Baurmeister, O. Uensal, F. Jordt, and J. Kiefer, "For polymer electrolyte membranes (PEM) fuel cell", US Patent 7,834,131, February 16 (2007).
  45. M. Hosseini and P. Zardari, "Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles for oxygen reduction reaction in alkaline media", Appl. Surf. Sci., 345, 223 (2015). https://doi.org/10.1016/j.apsusc.2015.03.146
  46. http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/April%202,%202009%20Hot%20Topic%20Hour/David%20St.%20A ngelo%20-%20Skyonic%204-2.pdf.
  47. A. J. Hunt, E. H. Sin, R. Marriott, and J. H. Clark, "Generation, capture, and utilization of industrial carbon dioxide", Chem. Sus. Chem., 3, 306 (2010). https://doi.org/10.1002/cssc.200900169
  48. P. Luckow, M. A. Wise, J. J. Dooley, and S. H. Kim, "Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent $CO_{2}$ concentration limit scenarios", Int. J. Greenhouse Gas Control., 4, 865 (2010). https://doi.org/10.1016/j.ijggc.2010.06.002
  49. R. E. Hester and R. M. Harrison, "Issues in environmental science and technology-carbon capture sequestration and storage", pp. 100-125, RSC Publishing, Cambridge, UK (2010).
  50. http://www.prnewswire.com/news-releases/global-chloralkali- caustic-sodasodium-hydroxide-chlorine-sodaashsodium- carbonate-market---industry-trends--forecaststo- 2019-300029819.html.
  51. N. Chavan, S. Pinnow, G. D. Polcyn, and T. Turek, "Non-isothermal model for an industrial chlor-alkali cell with oxygen-depolarized cathode", J. Appl. Electrochem., 1, 1 (2015).
  52. http://www.chemlocus.co.kr/news/pdfView/1223.
  53. S. K. Sugiyama. M. A. Sakata, and A. H. Furuya. "Accelerated degradation testing of gas diffusion electrodes for the chlor-alkali process", J. Appl. Electrochem., 33, 929 (2003). https://doi.org/10.1023/A:1025899204203