공중합체 폴리이미드를 이용한 기체분리막의 특성평가

이 정 무*.** · 이 명 건** · 김 세 종*** · 고 형 철*** · 남 상 용*.****.[†]

*경상대학교 나노신소재융합공학과, **애경유화 중앙연구소, ***(주)에어레인, ****경상대학교 공학연구원 (2015년 5월 7일 접수, 2015년 5월 28일 수정, 2015년 5월 28일 채택)

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes

Jung Moo Lee*,**, Myeong Geon Lee**, Se Jong Kim***, Hyung Chul Koh***, and Sang Yong Nam*,****,†

*Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 660-701, Korea **Aekyung Petrochemical Co., LTD, Daejeon 305-345, Korea

***Airrane Co., Ltd., Cheongju 361-911, Korea

****Engineering Research Institute, Gyeongsang National University, Jinju 660-701, Korea

(Received May 7, 2015, Revised May 28, 2015, Accepted May 28, 2015)

요 약: 새로운 구조를 가진 공중합체 폴리이미드를 이용하여 고투과, 고선택성 기체 분리막을 제조하였다. 기체투과도와 용해도를 높이기 위해 무수물인 2,2-bis(3,4-carboxylphenyl) hexafluoropropane과 두 종류의 아민인 2,4,6-Trimethyl-1,3-phenylenediamine과 4,4-Methylenedianiline을 사용하여 신규 폴리이미드를 합성하였다. Triethylamine과 Acetic anhydride를 사용 하여 화학적 이미드화 방법으로 공중합체를 합성하였으며, 평균분자량은 100,000 g/mol 이상을 나타내었다. 합성된 고분자의 열적 특성을 분석을 하기 위해 시차주사열량계(DSC)와 열중량분석기(TGA)로 측정을 하였으며, 유리전이온도(Tg)는 300°C, 열분해 온도는 500°C가 넘는 뛰어난 내열성을 나타내었다. 기체투과도 특성은 time-lag 장비를 사용하였으며 그 결과, 일반적 인 폴리이미드의 경우 대부분 기체투과도가 1 barrer 이하의 수치를 보이지만, 합성된 고분자의 경우 산소투과도 10.10 barrer 과 산소/질소 선택도의 경우 5.3으로 고투과, 고선택도를 나타내어 기체 분리막 분야에 적용 가능성을 확인할 수 있었다. 합 성된 고분자 중 기체투과특성이 더 우수한 공중합 폴리이미드를 사용하여 중공사를 제조하였고, 이를 이용하여 기체투과특성 을 측정하였다.

Abstract: We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide co-polymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized co-polymers showed high Tg over 300°C and high thermal degradation temperature over 500°C. The gas permeability, synthesized polyimide copolymer showed high O₂ permeability of 10.1 barrer with high O₂/N₂ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.

Keywords: Polyimide, 6FDA-pMDA-DAM polyimide, chemical imidazation, gas separation, hollow fiber, membrane

[†]Corresponding author(e-mail: walden@gnu.ac.kr, http://orcid.org/0000-0002-6056-2318)

1. 서 론

최근 고분자 분리막은 여러 과학기술 분야에서 핵심 요소로 많은 주목을 받고 있다. 분리막은 농도, 압력, 전 위차 등과 같은 추진력을 이용하여 통과하는 물질의 투 과속도를 조절할 수 있고, 낮은 제조단가, 높은 에너지 효율 등 여러 가지 장점을 가지고 있어 다양한 분야에 상용화되고 있다. 고분자 분리막을 이용한 응용분야로써 수처리용, 기체분리용, 에너지소재 등으로 나누어지는데 그중, 최근 온실효과에 따른 CO2 저감과 LNG 선박 등 의 질소가스공급시스템을 대체할 수 있는 기술로 기체분 리막 개발이 활발히 이루어지고 있다[1-2]. 기체분리막이 가지는 고유의 특성인 선택도와 투과도의 성능 조절을 통하여 다양한 고분자 재료가 사용되고 있으며, 적용 분 야에 따라 고분자 소재 개발이 이루어지고 있다. 기체분 리용 고분자 소재로는 폴리술폰[3], 폴리페닐렌옥사이드 [4], 폴리이미드[5], 폴리벤지옥사졸[6] 등이 연구되어 왔 다. 이 중, 폴리이미드는 강직한 구조로 인해 내화학성, 열안정성, 기계적 물성 등 많은 장점으로 산업 전반적 분야에서 다양하게 응용되고 있다[7-9]. 반면, 강직한 구 조로 인해 가공이 어렵거나 기체 투과도가 낮은 단점을 가지고 있으며, 이를 보완하기 위해 고분자 자체의 FFV (free volume)을 높이거나 Bulky한 치환기를 도입하는 등 개질 과정을 통해 고용해성, 고투과 성능을 가지는 소재들이 보고 되고 있다. 특히, 공중합체 폴리이미드의 경우 한 종류의 무수물과 두 종류의 아민을 사용하여 각 각의 모노머의 장점을 살려 고투과성 무수물과 아민 그 리고 고선택성 아민을 사용하여 용도에 맞게 그 비율을 조절하여 높은 투과성과 선택성을 동시에 달성할 수 있 는 고분자 소재들이 보고되고 있다[10].

본 연구에서는 6FDA-pMDA에 DAM 아민을 사용하 여 고분자 사슬 간격을 높여 기체투과도는 유지 시키면 서 고분자 구조의 사슬에 따른 선택도 또한 높일 수 있 는 신규소재의 개발을 위한 실험을 진행하였으며 특성 평가가 진행되었다.

2.실 험

2.1. 재료

4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA, Daikin Industies, LTD. Chemical Division, 99%)를 reflux 온도에서 acetic anhydride로 재결정을 한 후 150°C 진공오븐에서 24시간 건조하여 사용하였으 며 2,4,6-Trimethyl-1,3-henylenediamine (DAM, Tokyo Chemical Industry Co., Ltd., 98%)의 경우 Methanol과 ethyl acetate로 재결정한 후 사용하였다. 4,4-Methylenedianiline (p-MDA, Tokyo Chemical Industry Co., Ltd., 98%)은 50°C 진공오븐에서 24시간 동안 건조시 켜 사용하였다. N,N-Dimethylacetamide (DMAc,삼전화 학), 1-Methyl-2pyrrolydone (NMP, 삼전화학), Ethanol (삼전화학), N-Hexane (삼전화학), Methanol (삼전화 학), Isopropylalcohol (IPA, 삼전화학), Acetic anhydride (AcAn, 삼전화학), Triethylamine (TEA, 삼전화 학)은 정제하지 않고 공급받은 그대로 사용하였다.

2.2. 공중합체 폴리이미드의 합성 및 평막 제조

용해도가 높은 공중합체 고분자는 축합반응에 의해 합성이 되었다. 합성 방법은 2단계로 나누어지며, 1단 계 반응은 폴리아믹산 반응으로 DMAc에 pMDA와 DAM를 0.9 : 0.1 몰비로 0°C에서 완전히 녹인 후 6FDA 1몰을 첨가하여 약 6시간 동안 질소분위기에서 교반하였다. 이후, 50°C에서 6FDA 대비 1 : 4의 몰비 로 TEA와 AcAn을 천천히 넣어준 후, 105°C까지 1시 간 동안 천천히 승온하였으며, 105°C에서 1시간 동안 교반시켜 최종적으로 폴리이미드를 합성하였다. 제조한 고분자는 150°C 진공오븐에서 24시간 동안 건조했으 며, 고분자를 클로로포름에 녹여 2 wt% 용액을 제조한 후 샬레 위에 부어 상온에서 용매를 증발시킴으로써 평 막을 제조하였다. 제조된 평막에 잔존하는 용매를 제거 해주기 위해 메탄올로 용매치환을 1시간 진행 후 실온 에서 막을 건조하였다. 고분자 합성과정을 Fig. 1에 정 리하였으며 기체투과도를 측정하기 위한 제조 샘플의 사진을 Fig. 2에 나타내었다.

2.3. 특성평가

본 연구에서 개발된 폴리이미드 소재의 합성 여부를 확인하기 위해서 1H Nuclear magnetic resonance spectroscopy (NMR, JNM-AL400, JEOL社) 및 Fourier transform infrared spectroscopy (FT-IR, NICOLET IR 200, thermoscientific社)를 이용하여 분석하였다. 열 안 정성 변화를 확인하기 위해서 Thermogravimetric analysis (TGA, Q50, TA instruments社)를 이용해 800°C까 지 20 °C/min로 질소 기체 하에서 무게 변화 값을 측정

Fig. 1. Repeat unit structure and synthesis process of 6FDA-pMDA-DAM.

Fig. 2. Picture of polyimide dense film.

Fig. 3. Schematic diagram of hollow fiber spinning apparatus.

하였다. 고분자 사슬 사이의 간격을 확인하기 위해 Wide angle X-ray diffraction (XRD, D8 Advance, Bruker社, Germany)을 이용하였으며 Cu K α (λ = 1.54 Å) X-ray로 5-50°까지 측정하였다. 또한 식 (1)의 Bragg의 법칙을 이용해 d-spacing 값을 계산하였다.

$$n\,\lambda = 2d\sin\theta \tag{1}$$

2.4. 기체투과 특성 측정

공중합 폴리이미드 필름의 투과 성능을 측정하기 위 해서 단일 기체(H₂, N₂, O₂, CO₂)에 대해서 측정온도 30°C, 공급압 1000 torr로 Constant volume/variable pressure (Time-lag) 방법으로 기체 투과 특성을 측정하 였다. 기체 투과도 계산은 다음 식 (2)를 이용하였다.

$$P = \frac{dp}{dt} \left(\frac{VT_0 L}{p_0 T \Delta p A} \right) \tag{2}$$

투과도 P는 정상상태일 때 시간에 따른 압력의 비 (dp/dt), 하부 부피(V), 막 두께(L), 분리막의 상부와 하 부의 압력차(△p), 측정 온도(T), 막 유효면적(A), 표준 압력(P₀)과 온도(T₀)로 표현된다[11].

확산 계수(D)는 time-lag (θ)와 막의 두께(l)로 표현 되는 식 (3)으로부터 계산하였으며 용해도 계수(S)는 식 (4)로부터 계산되었다.

$$D = \frac{l^2}{6\theta} \tag{3}$$

$$S = \frac{D}{P} \tag{4}$$

기체 A에 대한 기체 B의 투과선택도(α_{A/B})는 기체 A와 B의 투과도 비(P_A/P_B)로 나타나며 식 (5)를 이용해 계산하였다.

$$a_{a/b} = \frac{P_A}{P_B} \tag{5}$$

2.5. 공중합체 폴리이미드 중공사막의 제조

중공사 제조용 도프용액은 공중합 폴리이미드 23 wt%를 NMP/IPA = 67 : 10 (wt%)의 조성으로 마그네 틱 드라이브가 장착된 도프용액 반응기를 이용하여 제 조하였다. 도프용액은 24시간 동안 고속으로 교반시켜 균일하게 제조하였고, 기포를 제거하기 위하여 50°C 순 환건조오븐에서 48시간 동안 탈기시켰다.

중공사의 제조는 상전환법을 이용하여 제조하였으며 본 연구에 사용된 중공사 제조 장치 모식도를 Fig. 3에 나타내었다. 중공사 제조 조건은 Table 1에 나타낸 바 와 같이 도프용액의 속도는 3.0 cc/min, 보어용액의 속

Table 1. Conditions of Hollow Fiber Spinning

Flow rate of dope solution (cc/min)	3.0
Flow rate of bore liquid (cc/min)	1.8
Temp. of dope solution (°C)	50
Temp. of 1^{st} , 2^{nd} bath and winding bath (°C)	30
Winding speed (m/min)	24
Air gap (cm)	5, 10, 15, 20

도는 1.8 cc/min를 유지하며 방사를 진행하였다. 이때 에어갭은 5, 10, 15, 20 cm로 조절하여 방사하였으며, 중공사 방사 시 도프용액의 온도를 50℃로 유지하며 방사를 진행하였다. 에어갭에 따른 샘플은 각각 HF05, HF10, HF15, HF20으로 명명하였다.

중공사 방사가 완료된 중공사형 기체 분리막은 약 24 시간 동안 수돗물을 이용하여 세척하였고, 끓는 물에서 2시간, 에탄올에서 2시간, 헥산에서 2시간 동안 용매치 환을 통하여 중공사막 내의 남아있는 잔존용매를 완전 히 제거해주었다. 후처리가 완료된 중공사는 상온에서 약 48시간 동안 건조하였다.

중공사형 기체 분리막 모듈의 제조를 위해 중공사를 950가닥으로 번들링하였다. Fig. 4에 나타낸 것과 같은 하우징에 중공사를 재단하고 투입하여 포팅을 진행하 였다. 포팅에 사용된 접착제는 2액형 에폭시 수지를 이 용하였다. 모듈 제조에 사용된 기체분리막의 가닥수는 950가닥이며 유효 막면적은 0.18 m²이다.

2.6. 중공사형 기체분리막의 특성평가

2.6.1. 기체분리막의 모폴로지

제조된 중공사 분리막의 모폴로지 관찰을 위하여 전 자주사현미경(SEM) JEOL JSM-6380LV (Japan)을 사 용하였다. 통상 시료를 준비하는 과정에 따라 SEM 측 정 시료를 준비한 다음 이온 코팅기(JEOL JFC-1100E) 를 이용하여 진공하에서 200초 동안 10 mA로 금 코팅 을 한 후 시료의 모폴로지를 관찰하였다.

2.6.2. 기체분리막의 순수 기체투과도(Permeance) 측정 제조된 기체분리막 모듈의 기체투과 특성을 알아보
기 위하여 순수기체에 대한 기체 투과도를 측정하였으
며, 본 실험에서는 산소, 질소, 이산화탄소, 육불화황에 대해 순수 기체 투과 테스트를 진행하였으며 그 기체
투과도는 다음 식에 의해 계산된다[12].

Fig. 4. The test module and housing for hollow fiber membrane.

$$\frac{P}{l} = \frac{Qi}{(\Delta P)A} \tag{6}$$

여기서 Qi는 기준 온도와 압력에서 기체 i에 대한 투 과량을 나타내며 △P는 중공사에 미치는 압력차이를 나 타내며, A는 유효 막면적을 나타낸다. 투과도는 Gas Permeation Unit (GPU)로 표현하며 그 값은 다음과 같다.

$$GPU = 1 \times 10^{-6} \frac{cm^3(STP)}{cm^2 \cdot sec \cdot cmHg}$$
(7)

순수기체에 대한 투과 선택도(a)는 순수기체(99.99% 이상)의 투과도의 비로 결정되며 다음 식으로 표현된다.

$$a = \frac{(P/l)i}{(P/l)j} \tag{8}$$

3. 결과 및 고찰

3.1. 합성고분자 구조 및 비율 확인

합성된 고분자의 경우 6FDA : p-MDA : DAM의 합 성 비율은 1 : 0.9 : 0.1로 합성을 진행하였으며, 실제 합성 비율을 1H-NMR을 통해 Fig. 5와 같이 확인하였 다. p-MDA의 메틸기의 경우 4.10 ppm에서 수소 peak 을 관찰할 수 있으며, DAM의 메틸기의 경우 1.59 ppm 에서 수소 peak을 확인할 수가 있다. 각각의 수소 peak 을 확인한 결과 0.91 : 0.09 비율을 확인하였으며, 이는

Fig. 5. NMR spectra of the copolymer (6FDA-pMDA-DAM).

Fig. 6. FT-IR spectra of the copolymer (6FDA-pMDA-DAM).

Fig. 7. Thermal decomposition curves of synthesized polyimide of 6FDA-pMDA and 6FDA-pMDA-DAM.

곧 폴리이미드 고분자에 사슬 하나에 p-MDA과 DAM 가 9.1: : 0.9 비율로 합성된 것을 확인할 수 있었다. 또 한 FT-IR을 이용하여 합성된 고분자에 대하여 구조분 석이 이루어졌으며 1723 cm⁻¹ 부근에서 이미드 그룹의 C=O 피크와 1367 cm⁻¹ 부근에서 이미드 링구조의 C-N-C 피크가 관찰됨으로써 폴리이미드가 합성된 것을 확인할 수 있었다(Fig. 6).

Table 2. Physical Properties of 6FDA-pMDA and 6FDA-pMDA-DAM

	Molecular weight (Mw)	Density $(g \cdot cm^{-3})$	d-spacing (Å)	Tg (°C)	열분해 온도 (℃)
6FDA- pMDA	166,609	1.385	5.44	304	542
6FDA- pMDA- DAM	142,472	1.376	5.46	310	572

Fig. 8. XRD patterns of synthesized polyimide.

3.2. 폴리이미드의 열적 특성

DAM 첨가 전, 후 폴리이미드 평막의 TGA 측정결과 를 Fig. 7에 도시하였다. 열분해 온도(degradation temperature)는 무게 감소비가 5 wt%에 도달했을 때의 온 도로 명명하였으며, DAM을 첨가한 폴리이미드의 열분 해 온도가 높아지는 것을 확인할 수 있었다. 이는 DAM을 첨가함으로써 p-MDA를 단독으로 합성하였을 때보다 구조적으로 유동성이 작아지고 더 강직한 구조 를 가져 열적으로 더 안정한 결과를 나타내는 것으로 생각된다. 그 결과는 Table 2에 정리하였다. 모든 고분 자에서 열분해 온도는 540°C 이상으로 뛰어난 열적 특 성을 보이고 있으며, 6FDA-pMDA 고분자 열분해 온도 (542°C)를 가지고 6FDA-pMDA-DAM 고분자 열분해 온도(572°C)를 가지는 것을 확인하였다.

3.3. 아민에 따른 고분자 사슬 간격 변화

Fig. 8은 사용한 아민의 종류에 따른 XRD 패턴 변화 를 나타낸 그래프이다. XRD 패턴은 아민의 치환기의 증가와 구조가 뒤틀려 있을수록 왼쪽으로 이동하였으 며, 그 결과 DAM을 첨가한 고분자의 경우 메틸기로

Sample code –	Permeability (Barrer ^a)				Selectivity		
	H_2	CO_2	O_2	N_2	H_2/CO_2	CO_2/N_2	O_2/N_2
6FDA-pMDA	62	14.48	7	1.4	4.3	10.34	5
6FDA-pMDA-DAM	85.15	22.2	10.10	1.9	3.84	11.7	5.3

Table 3. Gas Transport Properties of 6FDA-p-MDA and 6FDA-p-MDA-DMA Polyimide Membranes

^a 1 Barrer = 1×10^{-10} cm³ (STD) cm⁻¹ s⁻¹ cmHg⁻¹

(b)

Fig. 9. SEM images of polyimide hollow fiber membrane; HF05-(a) $200\times$, (b) $6,000\times$.

치환기를 많이 가지고 있으며 이로 인한 입체 장해의 증가로 인해 고분자의 자유체적이 증가되었으며 XRD 측정 결과 d-spacing은 5.46 Å으로 높은 결과를 나타내 었다. DAM을 첨가하지 않은 고분자의 경우 구조 자체 가 강직하고 고분자 사슬과 사슬 사이에 공간이 상대적 으로 적어 고분자 사이 간격이 짧은 d-spacing인 5.44 Å을 보였다[13].

3.4. 기체투과 특성에 아민이 미치는 영향

Table 3은 합성에 사용한 아민에 따른 기체투과도와 선택도이다. 기체투과도는 고분자의 자유부피, 사슬 간 격 및 사슬 유동성에 의한 결과로 해석되고 있다[12]. 따라서 고분자의 사슬간 거리를 계산하여 고분자구조 내의 자유부피를 유추할 수 있으므로 XRD를 이용하여 분석이 이루어졌다. 고분자의 사슬 간격을 의미하는 d-spacing과 확산도 감소비가 DAM 미첨가(5.44 Å, %) < DAM 첨가 (5.46 Å, %) 일치함을 확인함으로써 확산 감소가 고분자의 구조에 따른 결과임을 확인하였다. DAM의 유무에 따라 메틸기 3개의 치환기를 가지고 있 어 고분자 분자와 분자사이의 간격을 넓혀 주는 반면, DAM이 없는 경우 치환기를 가지고 있지 않아 구조 자 체 유동성이 작아 상대적으로 낮은 기체투과도를 예상 할 수 있었다. 이러한 이유로 기체투과도 비교 시 DAM 의 첨가 유무에 따라 산소투과도 10.10 barrer과 7 barrer 로 치환기와 유동성에 의한 영향이 큰 것을 알 수 있었 다. 또한 선택도 비교 시 산소/질소 선택도의 경우 DAM 이 있는 경우가 5.3으로 DAM이 없는 구조 5보다 높은 수치를 보였으며, 이는 구조의 유동성과 구조 형태가 기 체투과도에 영향을 미치고, 선택도 또한 고분자의 형성 형태에 따라 증가할 수 있는 것을 확인할 수 있었다.

3.5. 공중합된 폴리이미드 중공사막의 모폴로지

중공사 표면에 선택층을 형성시키기 위해서 IPA를 첨가하여 앞서 언급한 중공사 방사조건에 의해 제조된 중공사형 폴리이미드막의 SEM사진을 Fig. 9에 나타내 었다. 대표적으로 HF05의 모폴로지를 나타내었으며 4 가지 조건 모두 유사한 형태를 갖고 있었다. 단면에서 알 수 있듯이 거대 기공을 확인할 수 있었으며 첨가제 의 영향으로 막 표면에는 치밀한 스킨층이 형성되어 있 는 것을 알 수 있었다[14].

3.6. 순수 기체투과도(Permeance) 측정

앞서 제조된 4개의 샘플에 대하여 순수 기체투과도를 측정하였다. 모듈 제조 전 PDMS (Polydimethylsiloxane, Sylgard 184)를 사용하여 dip-coating method로 코팅을 하였으며, O₂, N₂, CO₂, SF₆에 대한 순수 가스 투과 시 험을 진행하여 Table 4에 그 결과를 나타내었다.

Sample	Permeance (GPU ^b)			Selectivity			
	SF_6	CO ₂	O_2	N_2	N_2/SF_6	CO_2/N_2	O_2/N_2
HF05	0.55	174.1	58.2	8.30	15.1	21.0	7.01
HF10	0.47	170.2	56.2	7.92	16.9	21.5	7.10
HF15	0.44	167.9	54.2	7.59	17.3	22.1	7.14
HF20	0.41	164.3	53.8	7.37	18.0	22.3	7.30

Table 4. Gas Permeance (GPU) and Selectivity of Hollow Fiber Membranes for Pure Gas Test

^b 1 GPU = 1 x 10^{-6} cm³ (STD) cm⁻² s⁻¹ cmHg⁻¹

각 샘플별로 N₂의 투과도는 7.37~8.30 GPU, O₂ 투 과도는 53.8~58.2 GPU, CO₂의 투과도는 164.3~174.1 GPU, SF₆의 투과도는 0.41~0.55 GPU를 나타내고 있 다. 모듈의 선택도(*a*)는 *a*_{02N2} = 7.01~7.30, *a*_{CO2/N2} = 21.0~22.3, *a*_{N2/SF6} = 15.~18.0의 값을 나타내고 있 다. 이는 에어갭이 높아짐에 따라 첨가제의 휘발되는 시간이 길어지게 되고 따라서 중공사막 외부의 선택층 이 두껍게 형성됨으로 인해서 투과도는 줄어들지만 선 택도는 높아지게 되는 trade-off 관계가 나타남을 알 수 있었다.

4. 결 론

본 연구에서는 기체투과도 성능을 높이기 위해 6FDA-pMDA 고분자에 DAM을 첨가하여 공중합체 폴 리이미드를 합성하였다. 합성된 고분자를 통하여 물리 화학적 특성과 수소, 산소, 질소와 이산화탄소에 대한 투과도와 선택도(H₂/CO₂), (O₂/N₂), (CO₂/N₂)에 대하여 연구하여 본 결과 다음과 같은 결과를 도출하였다. FT-IR을 이용해 합성여부를 확인하였고, NMR을 통해 실제 합성 비율을 확인하였다. TGA를 통해서 DAM 첨 가 여부에 따른 열적 특성을 알 수 있었다. 치환기가 증가할수록 사슬간격이 증가해 높은 d-spacing을 나타 냈으며, DAM를 첨가한 고분자가 큰 d-spacing을 가지 는 것을 확인하였다. 기체투과도 역시 DAM의 메틸 치 환기 영향으로 d-spacing이 높고 밀도 값이 낮아 높은 기체투과도를 보였다. 기체 선택도의 경우 투과도와 선 택도의 trade-off 관계이지만, 고분자의 구조의 유동성 과 구조 형태로 인해 DAM이 첨가된 고분자가 기체투 과도가 높으면서 선택도 또한 약간 더 상해하는 수치를 얻을 수 있었다.

합성된 고분자를 이용하여 중공사막을 제조하였고

이에 대한 기체 투과특성을 알아보았다. 중공사막 샘플 중 에어갭 20 cm일 경우 O₂ 투과도 53.8 GPU, N₂ 투 과도 7.37 GPU, CO₂ 투과도 164.3 GPU, 그리고 SF₆ 투과도 0.41 GPU로 투과도가 가장 낮지만 선택도가 가 장 높은 것을 알 수 있었다. 이는 고분자 소재의 특성 과 마찬가지로 에어갭이 높아질수록 투과도는 감소하 지만 선택도는 증가하는 trade-off 관계가 나타났다.

기존 폴리이미드에 비해 높은 기체 투과도를 가지고 있고, 특히 SF₆와 질소 분리 분야 등 Non-CO₂ 온실가 스 분리에 그 활용도가 높을 것으로 예상된다.

감 사

본 연구는 환경부 글로벌탑 환경기술개발사업 중 Non-CO₂ 온실가스 저감기술개발 사업의 지원에서 지 원받았습니다.

Reference

- J. R. Li, Y. Ma, M. C. McCarthy, J. Sculleya, J. Yub, H. K. Jeong, P. B. Balbuena, and H. C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", *J. Membr. Sci.*, **325**, 1 (2008).
- C. E. Powell and G. G. Qiao, "Polymeric CO₂/N₂ gas separation membranes for the capture of carbon dioxide from power plant flue gases", *J. Membr. Sci.*, 279, 1 (2006).
- J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", *J. Membr. Sci.*, 314, 123 (2008).

- S. E. B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", *J. Membr. Sci.*, 167, 203 (2000).
- M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", *J. Membr. Sci.*, 50, 285 (1990).
- C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", *J. Membr. Sci.*, **350**, 301 (2010).
- T. S. Chung, W. H. Lin, and R. H. Vora, "Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides", *J. Appl. Polym. Sci.*, 81, 3552 (2001).
- E. H. Kim, C. Y. Park, and J. H. Kim, "Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride", *Membr. J.*, 24, 100 (2014).
- L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J Membr. Sci., 62, 165 (1991).

- S. Xiao, X. Feng, and R. Y. M. Huang, "Correlation Synthetic 6FDA-ODA Copolyimide Membranes for Gas Separation and Pervaporation: Correlation of Separation Properties with Diamine Monomers" *Polymer Engineering & Science*, 48, 795 (2008).
- J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", *Macromolecules*, 38, 9638 (2005).
- H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA", *Membr. J.*, 21, 98 (2010).
- Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo soluble polyimide and montmorillonite with various chemical surface modification methods", *Polymer*, 40, 4407 (1999).
- S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", *Membr. J.*, **20**, 304 (2010).