DOI QR코드

DOI QR Code

Facilitated Transport Separation of Carbon Dioxide Using Aminated Polyetherimide Membranes

아민화된 폴리이서이미드 막을 이용한 이산화탄소의 촉진수송분리

  • Kwon, Se Hwan (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
  • 권세환 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과)
  • Received : 2015.05.27
  • Accepted : 2015.06.12
  • Published : 2015.06.30

Abstract

Aminated polyetherimide membrane synthesized in the laboratory according to amine ratio was used for measurement of gas permeability, diffusivity, and solubility about carbon dioxide, nitrogen, methane, oxygen, and sulfur dioxide with Time-lag method at room temperature. Generally, gas permeability is totally decreased because the more amination rate reacted to the main chain of amine groups, the more intermolecular space became narrow. However, gas permeability of sulfur dioxide was increased due to combination of sulfur dioxide and amine groups have acid and base properties respectively. Diffusivity and solubility of dry gas are totally decreased excluding sulfur dioxide as increasing amination rate. In case of sulfur dioxide, however, diffusivity as well as solubility was increased as increasing amination rate. Selectivity of carbon dioxide/nitrogen showed 60 when amination rate was 3. In case of humid gas, gas permeability of carbon dioxide was 70 barrer when relative humidity showed 100, and selectivity with nitrogen approximately showed 18.

아민화된 폴리이서이미드(polyetherimide (PEI))막을 실험실에서 합성하여 아민화별로 제조된 막을 이용하여 이산화탄소, 질소, 메탄, 산소, 이산화황의 기체투과도와 확산도 및 용해도를 Time-lag법으로 상온에서 측정하였다. 일반적으로 아민기의 주사슬에 반응되는 아민화율이 증가할수록 분자사이의 공간이 좁아지기 때문에 투과도가 전체적으로 감소했지만, 이산화황은 산 성질의 이산화황과 염기 성질의 아민기의 결합으로 인하여 증가하였다. 건기체에 대한 확산도 및 용해도는 아민화율이 증가할수록 이산화황을 제외한 모든 기체에서 감소하였고 또한 용해도 역시 감소하였다. 그러나 이산화황의 경우 아민화율이 증가하면서 용해도가 증가하게 되어 확산도 또한 증가한 것으로 사료된다. 이산화탄소/질소의 경우 선택도는 아민화율이 3일 경우 60을 나타내었다. 습기체의 경우 상대습도가 100일 때 투과도가 70 barrer을 나타내었고 질소에 대한 선택도는 약 18 정도를 보여주었다.

Keywords

References

  1. K. Huang, X.-M. Zhang, Y.-X. Li, Y.-T. Wu, and X.-B. Hu, "Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate- based ionic liquids", J. Membr. Sci., 471, 227 (2014). https://doi.org/10.1016/j.memsci.2014.08.022
  2. C. Zhang, Z. Wang, Y. Cai, C. Yi, D. Yang, and S. Yuan, "Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure", Chem. Eng. J., 225, 744 (2013). https://doi.org/10.1016/j.cej.2013.03.100
  3. H. Matsuyama, M. Teramoto, H. Sakakura, and K. Iwai, "Facilitated transport of CO2 through various ion exchange membranes prepared by plasma graft polymerization", J. Membr. Sci., 117, 251 (1996). https://doi.org/10.1016/0376-7388(96)00072-5
  4. H. Matsuyama, M. Teramoto, and K. Iwai, "Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2", J. Membr. Sci., 93, 237 (1994). https://doi.org/10.1016/0376-7388(94)00082-4
  5. H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, and M. Teramoto, "Facilitated transport of CO2 through polyethylenimine /poly(vinylalcohol) blend membrane", J. Membr. Sci., 163, 221 (1999). https://doi.org/10.1016/S0376-7388(99)00183-0
  6. L. Deng, T.-J. Kim, and M.-B. Hagg, "Facilitated transport of CO2 in novel PVAm/PVA blend membrane", J. Membr. Sci., 340, 154 (2009). https://doi.org/10.1016/j.memsci.2009.05.019
  7. R. D. Noble, "Analysis of facilitated transport withh fixed site carrier membranes", J. Membr. Sci., 50, 207 (1990). https://doi.org/10.1016/S0376-7388(00)80316-6
  8. R. D. Noble, "Facilitated transport mechanism in fixed site carrier membranes", J. Membr. Sci., 60, 297 (1991). https://doi.org/10.1016/S0376-7388(00)81541-0
  9. R. D. Noble, "Analysis of ion transport with fixed site carrier membranes", J. Membr. Sci., 56, 229 (1991). https://doi.org/10.1016/S0376-7388(00)80811-X
  10. R. Quinn, D. V. Laciak, and G. P. Pez, "Polyelectrolyte-salt blend membranes for acid gas separations", J. Membr. Sci., 131, 61 (1997). https://doi.org/10.1016/S0376-7388(97)00025-2
  11. C. Yi, Z. Wang, M. Li, J. Wang, and S. Wang, "Facilitated transport of CO2 through polyvinylamine/ polyethylene glycol blend membranes", Desalination, 193, 90 (2006). https://doi.org/10.1016/j.desal.2005.04.139
  12. L.-G. Wu, J.-N. Shen, H.-L. Chen, and C.-J. Gao, "CO2 facilitated transport through an acrylamide and maleic anhydride copolymer membrane", Desalination, 193, 313 (2006). https://doi.org/10.1016/j.desal.2005.04.146
  13. S. B. Hamouda, Q. T. Nguyen, D. Langevin, and S. Roudesli, "Poly(vinylalcohol)/poly(ethyleneglycol)/ poly(ethyleneimine) blend membranes - structure and CO2 facilitated transport", Comptes Rendus Chimie, 13, 372 (2010). https://doi.org/10.1016/j.crci.2009.10.009
  14. Y. Zhang, Z. Wang, and S. C. Wang, "Selective permeation of CO2 through new facilitated transport membranes", Desalination, 145, 385 (2002). https://doi.org/10.1016/S0011-9164(02)00441-1
  15. G. J. Francisco, A. Chakma, and X. Feng, "Separation of carbon dioxide from nitrogen using diethanolamine- impregnated poly(vinyl alcohol) membranes", Sep. Purif. Technol., 71, 205 (2010). https://doi.org/10.1016/j.seppur.2009.11.023
  16. J. Zou and W. S. Winston Ho, "CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol)", J. Membr. Sci., 286, 310 (2006). https://doi.org/10.1016/j.memsci.2006.10.013
  17. G. J. Francisco, A. Chakma, and X. Feng, "Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation", J. Membr. Sci., 303, 54 (2007). https://doi.org/10.1016/j.memsci.2007.06.065
  18. S. Shishatskiy, J. R. Pauls, and S. P. Nunes, Klaus-Viktor Peinemann, "Quaternary ammonium membrane materials for CO2 separation", J. Membr. Sci., 359, 44 (2010). https://doi.org/10.1016/j.memsci.2009.09.006
  19. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for CO2 separation", J. Membr. Sci., 359, 115 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
  20. L. Deng and M.-B. Hagg, "Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane", J. Membr. Sci., 363, 295 (2010). https://doi.org/10.1016/j.memsci.2010.07.043
  21. D. J. Kim and S. Y. Nam, "Research and development trends of Polyimide based material for gas separation", J. Membr. Sci., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  22. X. He and M.-B. Hagg, "Hollow fiber carbon membranes: Investigations for CO2 capture", J. Membr. Sci., 378, 1 (2011). https://doi.org/10.1016/j.memsci.2010.10.070
  23. A. Hussain and M.-B. Hagg, "A feasibility study of CO2 capture from flue gas by a facilitated transport membrane", J. Membr. Sci., 359, 140 (2010). https://doi.org/10.1016/j.memsci.2009.11.035
  24. X. He, J. A. Lie, E. Sheridan, and M.-B. Hagg, "CO2 Capture by hollow fibre carbon membranes: Experiments and process simulations", Energy Procedia, 1, 261 (2009). https://doi.org/10.1016/j.egypro.2009.01.037
  25. D. Grainger and M.-B. Hagg, "Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture", Fuel, 87, 14 (2008). https://doi.org/10.1016/j.fuel.2007.03.042
  26. L. Deng, T.-J. Kim, and M.-B. Hagg, "PVA/PVAm blend FSC membrane for CO2-capture", Desalination, 199, 523 (2006). https://doi.org/10.1016/j.desal.2006.03.118
  27. D. Y. Oh and S. Y. Nam, "Developmental trend of Polyimide membranes for gas separation", Membr. J., 21, 307 (2011).
  28. M. Sandru, T.-J. Kim, and M.-B. Hagg, "High molecular fixed-site-carrier PVAm membrane for CO2 capture", Desalination, 240, 298 (2009). https://doi.org/10.1016/j.desal.2008.01.053
  29. P. Tremblay, M. M. Savard, J. Vermette, and R. Paquin, "Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus", J. Membr. Sci., 282, 245 (2006). https://doi.org/10.1016/j.memsci.2006.05.030
  30. H. F. M. Mohamed, K. Itoa, Y. Kobayashi, N. Takimoto, Y. Takeoka, and A. Ohira, "Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells", polymer, 49, 3091 (2008). https://doi.org/10.1016/j.polymer.2008.05.003
  31. M. G. Baschetti, M. Minelli, J. Catalano, and G. C. Sarti, "Gas permeation in perflurosulfonated membranes: Influence of temperature and relative humidity", Int. J. Hydrogen Energy, 38, 11973 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.104
  32. L. Deng, T.-J. Kim, M. Sandru, and M.-B. Hagg, "PVA/PVAm blend FSC membrane for natural gas sweetening", Proc. 1st Annual Gas Processing Symp., Eds. H. Alfadala, G. V. Rex Reklaitis and M. M. El-Halwagi, pp. 247, Doha, Qatar (2009).
  33. G. Gebel, "Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution", Polymer, 41, 5829 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3
  34. J. Catalano, T. Myezwa, M. G. De Angelis, M. G. Baschetti, and G. C. Sarti, "The effect of relative humidity on the gas permeability and swelling in PFSI membranes", Hydrogen Energy, 37, 6308 (2012). https://doi.org/10.1016/j.ijhydene.2011.07.047
  35. J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of Polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325
  36. S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their O2/N2 permeation properties", Membr. J., 21, 62 (2011).