DOI QR코드

DOI QR Code

Liquid Velocity and Local Fouling in Coagulation-submerged Microfiltration Module for Drinking Water Treatment

정수처리를 위한 응집-침지식 정밀여과 모듈의 유체유속 및 국부오염

  • Received : 2015.05.21
  • Accepted : 2015.06.19
  • Published : 2015.06.30

Abstract

Effects of aeration intensity on local fouling were investigated in submerged membrane modules. Higher liquid velocities were observed at the section with the lower fiber packing density. The liquid velocity is increased with increasing the gas-liquid injection factor. The high shear stress coincided with the high liquid velocity. The shear stress increases with the increasing of gas-liquid injection factor and the liquid velocity improves with the increasing of gas-liquid injection factor. Irreversible fouling resistance ($R_{ir}$) of the fiber position is significant in a local region of high suction pressure near the suction point of the fiber (position 1). The ratio of $R_{ir}/R_m$ and $R_{ir}/R_r$ of position 1 was highest compared to the position 2 and 3. Irreversible fouling resistances results confirmed the preferential deposition of foulants near the suction part of the fiber where the local suction pressure is the highest and correspondingly, more particles are accumulated to the membrane surface. The effects of local fouling along the fiber length are significant factors to optimize the design of submerged modules.

침지식 분리막 모듈에서 공기강도에 따른 분리막 위치에 대한 오염을 조사하였다. 분리막의 충진밀도가 낮은 곳에서 높은 유체 유속을 나타내었으며, 유체 속도는 기-액 주입률에 비례하였다. 전단응력은 기-액 주입률 및 유체 유속에 비례하였다. 비가역오염($R_{ir}$)은 흡입 압력이 가까운 부분에서 가장 높게 나타났다(position 1). 비가역오염에 대한 저항과 분리막 고유 저항의 비($R_{ir}/R_m$) 및 비가역오염에 대한 저항과 가역오염의 저항의 비($R_{ir}/R_r$)도 position 1에서 가장 높게 조사되었다. 비가역오염($R_{ir}$)은 흡입 압력이 높은 곳인 position 1에 오염물질이 축적되어진 결과이다. 분리막 위치에 따른 오염현상은 모듈 디자인 최적화에 중요한 인자임을 알았다.

Keywords

References

  1. C. Cabassud, S. Laborie, and J. M. Laine, "How to slug flow can improve ultrafiltration flux in organic hollow fibers", J. Membr. Sci., 128, 93 (1997). https://doi.org/10.1016/S0376-7388(96)00316-X
  2. M. Bonin, C. Lagane, and C. Fonade, "Influence of a gas/liquid teo-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane", J. Membr. Sci., 180, 93 (2000). https://doi.org/10.1016/S0376-7388(00)00520-2
  3. M. Mercier, C. Fonade, and C. Lafforgue-Delorme, "How to slug flow can enhance the ultrafiltration flix in mineral tubular membranes", J. Membr. Sci., 128, 103 (1997). https://doi.org/10.1016/S0376-7388(96)00317-1
  4. O. S. Kwon, H. S. Yoon, Y. K. Choi, and S. H. Noh, "Variation of superficial velocity of a submerged module (YEF) by module size and aerator type", Desalination, 233, 319 (2008). https://doi.org/10.1016/j.desal.2007.09.057
  5. T. Ueda, K. Hata, Y. Kikuoka, and O. Seino, "Effect of aeration on suction pressure in a submerged membrane bioreactor", Wat. Res., 31, 489 (1997). https://doi.org/10.1016/S0043-1354(96)00292-8
  6. R. Liu, C. Wang, L. Chen, and Y. Qian, "Study on hydrauric characteristics in a submerged membrane bioreactor process", Process Biochemistry, 36, 249 (2000). https://doi.org/10.1016/S0032-9592(00)00210-7
  7. L. Vera, R. Villarroel, S. Delgado, and S. Elmaleh, "Enhancing microfiltration through an inorganic tubulrar membrane by gas sparging", J. Membr. Sci., 165, 47 (2000). https://doi.org/10.1016/S0376-7388(99)00216-1
  8. A. Sofia, W. J. Ng, and S. L. Ong, "Enhancing design approaches for minimum fouling in submerged MBR", Desalination, 160, 67 (2004). https://doi.org/10.1016/S0011-9164(04)90018-5
  9. H. Prieske, A. Drews, and M. Kraume, "Prediction of the circulation velocity in a membrane bioreactor", Desalination, 231, 219 (2008). https://doi.org/10.1016/j.desal.2007.12.010
  10. I. H. Won, D. C. Kim, and K. Y. Chung, "Transmembrane Pressure of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Bioreator in Coagulation Dosage", Membr. J., 25, 7 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.7
  11. J. H. Kim and F. A. DiGiano, "Defining critical flux in submerged membrane: Influence of length-distributed flux", J. Membr. Sci., 280, 752 (2006). https://doi.org/10.1016/j.memsci.2006.02.040
  12. S. Chang and A. G. Fane, "The effect of fiber diameter on filtration and flux distribution-relevence to submerged hollow fiber modules", J. Membr. Sci., 184, 221 (2001). https://doi.org/10.1016/S0376-7388(00)00626-8
  13. Z. F. Cui, S. Chang, and A. G. Fane, "The use of gas bubbling to enhance membrane process", J. Membr. Sci., 221, 1 (2003). https://doi.org/10.1016/S0376-7388(03)00246-1
  14. Y. K. Choi, C. S. Kim, M. S. Cho, O. S. Kwon, S. H. Noh, H. W. Hur, S. K. Park, K. H.Yeon, S. D. Yoon, and I. H. Yeo, "Effect of the aeration rate on the water velocity distribution in submerged hollow fiber modules", Proceedings of AMS5 Conference, Kobe, Japan (2009).
  15. C. Cabassud, S. Laborie, L. Durand-Bourlier, and J. M. Laine, "Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics any hydrodynamic parameters", J. Membr. Sci., 181, 57 (2001). https://doi.org/10.1016/S0376-7388(00)00538-X
  16. D. Pfleger, S. Gomes, N. Gibert, and H.-G. Wagner, "Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of Eulerian-Eulerian modeling approach", Chem. Eng. Sci., 54, 5091 (1999). https://doi.org/10.1016/S0009-2509(99)00261-4
  17. P. Spicka, M. M. Dias, and J. C. B. Lopes, "Gas-liquid flow in a 2D column: Comparison between experimental data and CFD modeling", Chem. Eng. Sci., 56, 6367 (2001). https://doi.org/10.1016/S0009-2509(01)00276-7
  18. E. N. C. Duc, L. Fournier, C. Levecq, B. Lesjean, P. Grelier, and A. Tazi-Pain, "Local hydrodynamic investigation of the aeration in a submerged hollow fibre membrane cassette", J. Membr. Sci., 312, 264 (2008).
  19. M. Simmonet, C. Gentric, E. Olmos, and N. Midoux, "Experimental determination of the drag coefficient in a swarm of bubbles", Chem. Eng. Sci., 62, 858 (2007). https://doi.org/10.1016/j.ces.2006.10.012
  20. J. Lin, M. Han, T. Wang, T. Zhang, J. Wang, and Y. Jin, "Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor", Chem. Eng. J., 102, 51 (2004). https://doi.org/10.1016/j.cej.2004.01.023
  21. M. Cheryan, "Ultrafiltration and Microfiltration Handbook", Technomic Publishing (1998).
  22. M. Mercier, C. Fonade, and C. Lafforgue-Delorme, "Influence of flow regime on the efficiency of a gas-liquid two-phase medium filtration", Biotech. Techniques, 9, 853 (1995). https://doi.org/10.1007/BF00158535
  23. N. V. Ndinisa, D. E. Wiley, and D. F. Fletcher, "Computational fluid dynamics simulations of taylor bubbles in tubular membrane-Model validation and application to laminar flow system", Chem. Eng. Res. & Design, 83, 40 (2005). https://doi.org/10.1205/cherd.03394
  24. N. V. Ndinisa, A. G. Fane, D. E. Wiley, and D. F. Fletcher, "Fouling control in a submerged flat membrane system: Part II-Two-phase flow characterization and CFD simulations", Sep. Sci. Tech., 41, 1411 (2006). https://doi.org/10.1080/01496390600633915
  25. J. H. Kim and F. A. DiGiano, "Particle fouling in submerged microfiltration membranes: effects of hollow-fiber length and aeration rate", AQUA, 55, 535 (2006).
  26. I. S. Chang, P. Le Clech, B. Jefferson, and S. Jude, "Membrane fouling in membrane bioreactors for wastewater treatment", J. Environ. Eng., 128, 1018 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)