직접 메탄올 연료전지 적용을 위한 PVA 기반 양이온교환막 제조 및 특성연구

한남대학교 대덕밸리캠퍼스 화학공학과 (2015년 3월 5일 접수, 2015년 4월 8일 수정, 2015년 4월 14일 채택)

Studies on the Preparation and Characterization of PVA Based Cation-exchange Membranes for DMFC Application

Yi Seul Jeon, Ka young Kim, and Ji Won Rhim[†]

Department of Chemical Engineering, Hannam University, Daejeon 305-811, Korea (Received March 5, 2015, Revised April 8, 2015, Accepted April 14, 2015)

요 약: 수용성 고분자인 poly(vinyl alcohol) (PVA)에 가교제인 sulfosuccinic acid (SSA)를 첨가하여 가교반응을 통해 물에 용해되지 않는 막을 제조하였으며, 이온교환능력을 부여하기 위해 poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA)를 PVA 질량대비 70, 80, 90 wt%로 달리 첨가하여 막을 제조하였다. 제조한 막의 특성을 알아보기 위해 FT-IR, 함수율, 이온교환 용량, 이온전도도, 메탄을 투과도를 측정하였다. 함수율과 이온교환용량, 이온전도도는 PSSA_MA 함량이 증가할수록 증가하는 경향을 나타내었으며 메탄을 투과도는 감소하는 경향을 나타내었다. 특성평가 결과 본 실험 막의 최적 조성은 PVA10/SSA9/ PSSA_MA80으로 도출되었다.

Abstract: The water-soluble poly(vinyl alcohol) membranes with the addition of sulfosuccinic acid (SSA) were prepared and to assign the ion exchange capacity, poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA) was added to PVA according to PSSA_MA contents of 70, 80 and 90 wt%. To characterize the resulting membranes, FT-IR, water contents, ion exchange capacity, proton conductivity and methanol permeability were measured. As PSSA_MA contents increased, water contents, ion exchange capacity, proton conductivity increased, but methanol permeability decreased. From these results, the best preparation component was known as PVA10/SSA9/PSSA_MA80.

Keywords: PVA (Poly vinyl alcohol), SSA (Sulfosuccinic acid), PSSA_MA (Poly(4-styrene sulfonic acid-co-maleic acid)), DMFC (direct methanol fuel cell)

1. 서 론

급격한 인구증가와 산업혁명 이후 화석연료 사용의 증 가로 산성비, 스모그 현상 등과 같은 대기환경오염 문제 가 심각해지고 있다. 화석연료는 지구 온난화의 주범인 이산화탄소를 발생시키며 인간뿐만 아니라 모든 생명체 에 유해한 황 화합물을 발생시킨다. 또한 화석연료 사용 은 각종 산업폐수로 인한 수질오염을 발생시키고 수질자 원의 부족을 야기하여 추가적으로 2차 문제가 발생하게 된다. 뿐만 아니라 화석연료는 매장량이 한정되어 있기 때문에 고갈 시점을 대비하여 화석연료를 대체할 수 있 는 친환경적인 대체 에너지원 개발이 필요하다[1-3]. 세계 각국에서는 화석연료를 대체할 수 있는 미래 대 체에너지원 개발에 힘쓰고 있다. 그중 최근 들어 관심 이 높아진 분야가 '연료전지'분야이다. 연료전지 기술 의 실현은 기존의 내연기관에 비해 높은 전기학적 효율 을 가지고 있기 때문에 화석연료에 대한 의존성을 감소 시킬 뿐만 아니라 유독물질의 배출을 감소시켜준다[4].

[†]Corresponding author(e-mail: jwrhim@hnu.kr, http://orcid.org/0000-0001-7803-2959)

Fig. 1. Condensation reaction of PVA/SSA/PSSA_MA membranes.

연료전지는 작동 온도, 연료의 종류, 전해질 등에 따 라서 구분된다[5]. 그중 메탄올을 anode에 직접 주입하 여 사용하는 직접 메탄올 연료전지(DMFC)의 경우, 리 튬이온 전지보다 무려 10배나 높은 전류밀도를 나타낸 다. 이에 직접메탄올 연료전지를 휴대용 전자장치에 적 용하기 위한 연구에 관심이 높다[6]. 수소를 연료로 사 용하는 다른 연료전지의 경우 수소가스는 개질된 상태 로 사용하기 때문에 별도의 개질장치가 필요하다. 그러 나 직접 메탄올 연료전지는 개질장치가 필요 없으며, 메탄올을 연소시키게 되면 이산화탄소와 물 외의 인체 및 환경에 영향을 끼치는 생성물이 없으므로 청정원료 로 사용가능하다는 장점이 있다[7]. 또한, DMFC에 사 용되어지는 이온교환막은 출력에너지 밀도가 크다는 장점이 있지만 주 연료가 되는 메탄올이 anode에서 cathode로 투과되어 전극과 반응을 일으켜 전지전압의 손실을 발생시키게 된다. 따라서 메탄올의 투과를 막을 수 있는 고분자전해질 막의 개발이 필요하다[8,9]. DMFC 의 이온교환막은 가장 핵심적인 부분으로서 연료전지의 성능을 좌우한다[10]. 이온교환막을 통한 양성자의 전달 은 막을 통한 물 분자의 수송과 관련이 깊다. 이는 막을 통한 메탄올 투과 감소에 이르게 쌍극자 모멘트가 발생 하며, 메탄올의 선택적인 물리 특성에 의해 수송될 수 있다[11]. PVA는 생체고분자로서의 응용도가 다양한 물질이며 화학적 안정성이 높다. 또한 막 제조가 용이하 며 가교 등과 같이 고분자 개질이 용이해 막의 화학적 구조 변형이 쉽다[12,13]. PVA는 우수한 메탄올 barrier 로써 양자교환막(PEM)을 제조하기 위한 유용한 물질이 다[14]. 최근에는 PVA를 전해질 막으로 이용하기 위하 여 PVA에 카르복실산(COOH)나 설폰산(SO₃H) 등의 이 온그룹을 부가시켜 이온전도도를 향상시키고자 하는 연 구결과가 다수 발표되었다[15-19]. 앞서 발표된 C. W. Lin[20]의 논문에서는 PVA와 PSSA_MA 사이의 분자 상호작용을 통한 막 제조와 PSSA_MA 함량의 증가에 따른 물의 대한 흡수성 및 전도성과의 상관관계를 발표 한 바 있다.

본 연구에서는 수용성 고분자인 PVA를 통해 술폰기 를 함유한 가교제인 SSA를 사용하여 화학적 변형을 시 켜 물에 용해되지 않는 PVA/SSA막을 제조한 후 이온 교환능력을 부여하기 위해 PSSA_MA를 첨가하여 PVA/ SSA/PSSA_MA 이온교환막을 열 가교를 통하여 합성 하였다. 보통, PSSA_MA를 PVA의 가교제로 많이 사 용하게 되는데 본 실험에서는 가교제로는 SSA를 사용 하며, 이온교환능력을 부여하기 위해 PSSA_MA를 첨 가하였다. 이때 막의 성능 및 내구성에 적합한 화학적 농도 및 최적 조건을 알아보기 위하여 가교제 SSA의 양과 PSSA_MA의 함유량과 열 가교 시간을 달리하여 적합한 막 조건을 도출하였다.

2.실 험

2.1. 시약 및 재료

본 실험에 사용된 수용성 고분자로는 Poly(vinyl alcohol) (PVA, Aldrich, Mw 89,000~98,000)을 이용하였으 며, PVA 가교를 위한 가교제로는 Sulfosuccinic acid (SSA, Aldrich, Mw 20,000, 70% solution in water)를 사용하였다. 막에 이온교환능력을 부여하기 위해서는 Poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA, Aldrich, Mw 198.15)를 사용하였다. 모든 시약은 정제 하지 않고 사용하였다. 초순수는 Younglin Pure Water System (Seoul, Korea)으로 생산하였다.

Fig. 2. Membrane preparation of PVA/SSA/PSSA_MA membrane.

2.2. 막 제조

이온교환막의 최적화된 조건을 찾기 위해 SSA 함량 과 PSSA_MA 함량을 변화시켜가며 용액을 제조하였다. PVA 10 wt% 용액 제조를 위하여 90°C에서 초순수에 6시간 이상 교반시키면서 완전히 녹인 후 상온에서 하 루 이상 냉각시켰다. PVA 수용액에 가교제인 SSA의 양 을 PVA 질량대비 9, 11%로 달리하여 첨가한 후 24시간 이상 충분히 교반시켰다. PSSA_MA 수용액은 10 wt% 로 제조하였으며, 제조된 PSSA_MA용액은 PVA 질량대 비 70, 80, 90%로 함량을 변화시켜가며 PVA/SSA 용액 에 첨가하였다. 만들어진 용액은 유리판 위에 막 두께 30 µm 이하로 casting 하여 60°C의 진공오븐에서 3시간 동안 건조시켰다. 건조된 막은 유리판에서 떼어낸 후 120°C 진 공오븐에서 가교시간을 달리하여 열 가교시켰다.

2.3. FT-IR

제조된 PVA/SSA/PSSA_MA 이온교환막의 가교여부 와 막의 작용기 존재 유무를 확인하기 위하여 FT-IR Spectrometer (Bruker ALPHA-T)를 이용하였다. FT-IR 분석은 0~4500 cm⁻¹의 파수 범위에서 실시하였다.

2.4. TGA

열적 성질은 고분자의 고유특성이 되기 때문에 열분 석을 통하여 다양한 정성분석을 하였다. 고분자의 경우 다양한 유리전이온도, 분해 등의 변화가 열분석으로 관 찰된다. 따라서 TGA를 통해 고분자의 분해와 열적 안 정성을 측정하였다. 2.5. 함수율(Water content)

막의 함수율을 알아보기 위해 건조 전과 후의 막 질 량과 넓이의 변화를 기초하여 계산하였다. 일정한 크기 의 시료막을 준비하여 건조무게를 잰 후 25°C에서 초 순수에 하루 이상 충분히 침적시켰다. 침적시킨 막을 꺼내어 여과지로 표면에 부착된 수분을 닦아낸 후 밀폐 용기에 넣어 칭량하였다. 다음으로 vacuum oven에 넣 어 완전히 수분을 제거하고 무게를 칭량하였다.

함수율 (%) =
$$\frac{W_{wet} - W_{dry}}{W_{dry}} \times 100$$

2.6. 이온교환용량(Ion exchange capacity, IEC)

이온교환용량을 통해 막 내의 친수성기인 양이온 교 환기의 포함정도를 알 수 있다. 이온교환용량을 측정하 기 위해 산염기의 적정반응을 이용하는 Fisher의 역적 정법을 사용하였다. 만들어진 막을 적당한 크기로 자른 후 무게를 측정하여 0.1N NaOH 수용액에 침적시킨다. 하루 이상 - SO₃⁻H⁺ 형태가 - SO₃Na⁺ 형태로 치환되도 록 한 후 0.1N HCI을 이용하여 적정함으로서 NaOH의 감소량을 측정하여 아래의 식으로부터 이온교환용량을 구하였다.

이온교환용량(IEC) = $\frac{2 \times ((V_{NaOH} \times N_{NaOH}) - (V_{HCI} - N_{HCI}))}{w_{dry}}$

2.7. 이온전도도

이온전도도는 측정용 셀을 이용하여 측정하였다. 제조 된 막을 물속에서 하루 이상 침적시킨 후 측정용액인 1M H₂SO₄ 수용액에 하루 침적하였다. 준비된 막을 셀 중앙에 위치시키고 양쪽에 1M H₂SO₄ 수용액을 채워준 뒤 항온수조 중에서 온도를 평형에 도달하게 하였다. 실 험에 사용된 전극은 Pt를 사용하였으며 주파수 1000 Hz, 전압 1 V에서 LCR hitester (Reactance Capacitor Resistor tester, Hioki Model 3522)로 전기 저항을 측정하였다(*R*₁). 다음은 막을 꺼낸 후 1M H₂SO₄ 수용액의 저항을 측정하 였다(*R*₂). 막의 전기저항 R은 *R*₂ - *R*₁으로부터 구하였다. 이온전도도 K는 다음과 같은 식으로 구하였다.

$$K = \frac{l}{\rho} = \frac{l}{R \cdot S}$$

Fig. 3. Diffusion cell for methanol permeability.

Fig. 4. FT-IR of PVA/SSA/PSSA MA exchange membranes.

Fig. 5. TGA of PVA/SSA/PSSA_MA exchange membranes.

2.8. 메탄올 투과도

메탄올 투과도 실험은 Fig. 3과 같이 Diffusion cell을 이용하여 측정하였다. 한쪽 chamber (V_A = 250 mL)는 2 M의 메탄올 수용액을 넣고 다른 쪽 chamber (V_B = 35 mL)에는 초순수를 채웠다. 두 chamber 사이에 막의 유효면적은 7.02 cm²이며, 클램프를 이용하여 기밀을 유지하였다. 메탄올 투과도 실험은 양쪽 chamber의 교 반 하에 이루어졌다. 온도측정은 thermocouple을 이용 하였고 농도측정은 Porapak Q column이 장착된 Gas chromatography (Younglin Model 680D)로 수행하였다. 메탄올 투과도는 시간에 따른 농도변화를 측정하여 기울기로부터 계산하였다.

$$C_{\rm B}(t) = \frac{AP}{V_B L} C_A(t - t_0)$$

여기서, C_B(t)는 시간 t에서의 chamber B의 메탄올 농도, C_A는 chamber A의 초기 메탄올 농도, V_B는 chamber B의 부피, L은 막의 두께, A는 막의 유효면적, P는 permeability를 의미한다.

3. 결과 및 고찰

3.1. FT-IR

Fig. 4는 PVA, PVA/SSA, PVA/SSA/PSSA MA membrane에 대한 FT-IR spectrum의 결과이다. PVA막 의 FT-IR 결과 3250 cm⁻¹ 지점에서 하이드록시기(-OH) 가 발견되었다. 또한 가교반응에 의한 새로운 공유결합 의 생성 및 PVA 사슬간의 수소결합의 수가 감소된 것 을 통하여 PVA와 SSA 사이에 가교가 이루어졌음을 확 인하였다. PVA/SSA 막의 경우 1704 cm⁻¹의 지점에서 이중결합이 있는 (-C=O)를, 1230 cm⁻¹의 지점에서 단일 결합 (-C-O)의 존재를 확인하였다. PVA/SSA/PSSA MA 이온교환막에서는 PVA와 PSSA MA의 카르복실기 alcohol group 사이의 ester bond (C-O-C)의 존재를 확인하 였다. 가교제인 SSA에 의해 첨가된 술폰기(-SO₃H)는 1030 cm⁻¹의 지점에서 확인하였다. 또한, 하이드록시기 (-OH)는 3200~3600 cm⁻¹의 범위에서 관찰되었다. 이는, 본래의 PVA 막에 있어서 고분자가 가지고 있는 친수성 성질에 의해 형성된 것으로 사료된다.

3.2 TGA

Fig. 5는 SSA 함량에 따른 막의 열적 안정성 평가를 위해 측정한 TGA 결과이다. 가교제 SSA양은 PVA 질 량대비 9, 11%로 막을 제조하였다. 9%와 11%의 가교 제가 첨가된 막 모두 0~100°C에서 막의 수분 손실이 일어났으며, 100°C 이후 같은 온도에 있어서 SSA 11% 가 SSA 9%보다 질량감소가 더 적게 일어났다. 전체적 인 질량감소는 SSA 9%가 11%보다 크게 일어났으며,

Fig. 6. Water content of PVA/SSA/PSSA_MA exchange membrane PSSA_MA contents at 70, 80, 90%.

Fig. 7. Water content of PVA/SSA/PSSA_MA exchange membrane cross-linking time at 5, 8, 9, 10 hr.

Fig. 8. IEC of PVA/SSA/PSSA_MA exchange membrane PSSA MA contents at 70, 80, 90%.

400℃ 이후에는 고분자 사슬의 완전한 파괴를 알 수 있었다. TGA 결과로 보아 SSA를 11%로 막을 제조하 였을 경우 지나친 가교로 인하여 brittle한 성질을 가지 게 되어 이온교환막으로는 부적절하다고 판단하였다. 따라서 본 실험에서는 가교제인 SSA의 함량을 9%로 고정하여 실험을 진행하였다.

3.3 함수율

일반적으로 고분자 내의 물의 상태는 free water, freezing water, non-freezing water로 구분할 수 있다. 물은 고분자에 의해 흡수될 때 물 분자는 고분자사슬의 극성결합과 이온그룹과 우선 결합한다. bond의 물의 양 은 고분자의 극성과 이온양에 의해 의존한다. 함수율은 가교시간과 PSSA_MA 함유량에 따라 다르다.

3.3.1 PSSA_MA 함유량에 따른 함수율

Fig. 6은 PVA 10 wt%에 SSA 9%의 혼합용액에 PVA 질량 대비 첨가한 PSSA_MA 양에 따른 함수율을 나타낸 그래프이다. PSSA_MA의 양을 PVA 질량대비 70, 80, 90%로 증가시킬수록 함수율은 30%에서 44% 으로 증가하는 경향을 나타내었으며, 이와 같은 결과는 이온그룹과의 우선 결합으로 인한 화학적 농도의 증가 차이로 사료된다.

3.3.2 가교시간에 따른 함수율

Fig. 7은 PVA 10 wt%에 SSA 9%의 혼합용액에 PSSA MA를 PVA 질량대비 80%로 첨가하여 막을 제조 한 후, 열 가교 시간에 따른 함수율을 나타낸 그래프이다. 함수율은 가교시간이 증가함에 따라 감소하는 경향 을 보였다. 5시간 가교시킨 막의 함수율은 33.41%로 측정되었으며 8시간의 경우 32.33%, 10시간의 경우 32.27%로 나타났다. 이는 가교시간이 증가할수록 결합 할 수 있는 bond의 수가 거의 일정하기 때문에 큰 변화 가 없는 것으로 사료된다. 가교시간이 증가함에 따라 막의 성질변화와 내구성 약화 문제로 본 실험에서는 막 의 열 가교 시간을 8시간으로 고정시켜 막을 제조하였 다. 가교시간을 5시간 이내로 설정하여 막을 제조하였 을 경우에는 가교가 충분히 진행되지 않아 고온에서의 가교결합이 약해지게 된다. 따라서 본 실험에서는 막의 가교시간을 5시간 이상으로 설정하여 실험을 진행하였 으며, Fig. 7과 같은 결과를 얻었다.

3.4. 이온교환용량(Ion exchange capacity, IEC)

Fig. 8은 PSSA_MA 함량에 따른 이온교환용량을 나 타낸 것이다. 가교제인 SSA의 양은 9%로 고정시켰으며,

Fig. 9. Proton conductivity of PVA/SSA/PSSA_MA membranes.

본 실험에서는 최적의 막 조건을 찾기 위해 PSSA_MA 의 함량을 증가시켜가며 이온교환용량을 측정하였다. 그 림에서와 같이 PSSA_MA 함량이 증가할수록 이온교환 용량은 3.53, 4.18, 4.57 meq/g로 증가하는 경향을 나타 내었다. 이는 PSSA_MA 함유량에 따라 교환할 수 있 는 이온의 양이 증가하였기 때문으로 사료된다. 그러나 PSSA_MA의 함량이 증가하게 되면 이온그룹과의 결합 으로 인한 화학적 농도의 증가로 인해 막의 변형을 초 래하게 된다. 따라서, 막의 변형이 되지 않으면서 이온 교환용량이 우수한 비율인 PSSA_MA 함량 80%를 본 실험의 막 제조 최적 조성으로 선정하였다.

3.5. 이온전도도(Proton conductivity)

Fig. 9은 30°C에서의 PSSA_MA 함량에 따른 이온전 도도를 나타낸 것이다. 120°C에서 열 가교한 PVA/SSA/ PSSA_MA 막은 PSSA_MA 함량 70% 막이 가장 낮게 측 정되었으며, 90% 막이 가장 높게 나타났다. PSSA_MA 함량 70%의 막의 경우 이온전도도는 0.01796 S/cm, 80% 함량의 경우 0.04134 S/cm, 90% 함량의 경우 0.04251 S/cm로 측정되었다. 따라서 PSSA_MA 함량이 증가할수 록 이온전도도가 증가하는 경향을 나타내었다. Nafion 115의 이온전도도(0.1 S/cm)와 비교해보았을 때 이온전도 도는 약 50% 정도 낮은 결과를 나타내었다. Nafion115에 근접한 이온전도도 값을 얻기 위해서는 PSSA_MA 함량 을 더욱 증가시켜야 하지만 이온전도도와 함께 함수율이 증가하기 때문에 막의 성질변화가 이루어지게 된다.

3.6 메탄올 투과도

Fig. 10은 PSSA_MA 함량에 따른 온도별 메탄올 투 과도를 나타낸 것이다. 그림에서와 같이 메탄올 투과도

Fig. 10. Methanol permeability of PVA/SSA/PSSA_MA exchange membrane PSSA_MA contents at 70, 80, 90%.

는 온도가 25, 40, 60°C로 증가함에 따라 증가하는 경향 을 나타내었다. 이는 온도가 높아질수록 막의 자유체적 이 커져 투과할 수 있는 메탄올의 양이 많아지기 때문인 것으로 사료된다. 메탄올 투과도는 PSSA_MA 함량이 증가함에 따라 감소하는 경향을 나타내었다. PSSA_MA 90% 막의 경우 0~9.03 × 10⁻⁷ cm²/s, 80% 막의 경우 0 ~8.3 × 10⁻⁷ cm²/s, 70% 막의 경우에는 0~1.009 × 10⁻⁶ cm²/s 범위의 값을 얻었다. 이는 PSSA_MA의 함유량에 따라 술폰기(-SO₃H)의 양이 증가하기 때문에 술폰기의 영향을 받아 메탄올이 투과할 수 있는 막 내의 자유부피 감소로 인한 것으로 사료된다. 본 실험에서 측정된 메탄 올 투과도 값은 PSSA_MA 함량에 상관없이 모두 기존 의 Nafion 115의 메탄올 투과도 1.17 × 10⁻⁶ cm²/s보다 더 낮은 0~9.03 × 10⁻⁷ cm²/s의 범위를 얻었다.

4. 결 론

수용성 고분자인 PVA에 가교제 SSA를 이용하여 가 교과정을 거친 후 이온교환능력을 부여하기 위해 PSSA_MA를 첨가하여 막을 제조하였다. SSA의 함량 및 PSSA_MA의 함량, 가교시간 변화에 따라 제조한 막의 성능평가를 위해 FT-IR, TGA, 함수율, 이온교환 용량, 이온전도도, 메탄올 투과도에 대한 실험을 진행 하였다.

FT-IR을 통해 이온교환막으로서의 작용기의 존재와 가교 여부를 알 수 있었으며, 최적의 막 조성을 찾기 위해 실시한 실험의 결과에서 SSA의 양은 9%보다 11% 함유된 막의 열적 안정성이 더 우수하게 나타났 다. 또한, PSSA_MA의 함유량을 PVA 질량대비 70, 80, 90%로 증가시킬수록 함수율은 30%에서 44%로 증 가하는 경향이 나타났으며, 이와 같은 결과는 이온 그 룹과의 우선 결합으로 인한 화학적 농도의 증가 차이로 사료된다. 5시간 가교시킨 막의 함수율은 33.41%, 8시 간의 경우 32.33%, 10시간의 경우 32.27%로 나타났다. 가교시간에 따른 함수율은 가교시간에 따라 큰 차이가 없었으나 가교 시간을 증가시킬수록 막의 성질 변화에 따른 손상 문제를 초래할 수 있기 때문에 막의 가교시 간은 8시간으로 고정하였다.

PSSA MA 함량을 증가시킬수록 이온교환용량과 이온 전도도는 증가하였다. 이온교환용량의 경우 3.53, 4.18, 4.57 mea/g로 증가하는 경향을 나타내었다. 이온전도도 는 30°C에서 측정했을 때 기존의 Nafion 115의 이온전도 도인 0.1 S/cm에 미치지 못하는 결과이지만 PSSA MA 함량 70%일 때 0.01796, 80%일 때 0.0413, 90%일 때 0.04251 S/cm로 PSSA_MA 함량이 증가함에 따라 증가 하는 경향을 나타내었다. 메탄올 투과도의 경우 기존의 Nafion 115 1.17 × 10⁻⁶ cm²/s보다 낮은 투과도의 범위 0 ~1.009 × 10⁻⁷ cm²/s를 얻었다. 이온전도도와 이온교환용 량에 있어서, PSSA MA 함량이 증가되면 이온교환용량 과 이온전도도는 증가하지만, 함수율 또한 증가하기 때 문에 앞으로의 DMFC에 사용되는 이온교환막의 제조 에 관하여는 더 많은 연구가 필요하다고 사료된다. 이 에, 본 연구에서 막의 모든 성능을 고려하였을 때 PVA 10 wt%, SSA 9%, PSSA MA 80%의 조성 및 열 가교 시간 8시간이 성능 면에서 가장 최선의 결과로 도출되 었다.

감 사

이 논문은 2013년 교육부와 한국연구재단의 지역혁신 인력양성사업의 지원을 받아 수행된 연구임(NRF-2013 H1B8A2032261).

Reference

- D. J. Kim, S. Y. Nam, "Research trand of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", *Membr. J.*, 22, 155 (2012).
- 2. A. Kapoor and T. Viraraghavan, "Application of

immobilized aspergillus niger, biomass in the removal of heavy metals from an industrial waste water", *J. Environ. Eng.*, **33**, 371 (1997).

- 3. C. T. Matos, S. Velizarov, J. G. Crespo, and M. A. M. Reis, "Removal of mono-valen toxy anions from waterinanion exchange membrane bio reactor: Influence of membrane perm selectivity", *Water Res.*, **40**, 231 (2006).
- J. W. Rhim and H. B. Park, "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", *J. Membr, Sci.*, 238, 143 (2004).
- H. J. Kim, "Preparation of high functional energy saving materials using polymer nano-composites", Thesis, University of chonnam (2009).
- S. W. Yoon and D. H. Kim, "Preparation and characterization of PVA/PAM electrolyte membranes containing silica compound for direct methanol fuel cell application", *polymer(Korea)*, 34, 45 (2010).
- J. H. Sauk and G. Shul, "Effect of crossover on the performance of direct methanol fuel cell(DMFC)", *Chem. Eng. J.*, 37, 21 (1999).
- S. W. Cheon, J. H. Jun, and J. W. Rhim, "Studies on the preparation of the poly(vinyl alcohol) ion exchange membranes for direct methanol fuel cell", *Membr. J.*, 13, 191 (2003).
- 9. C. W. Hwang, "Synthesis of an aminated poly(acrylamide-co-styrene-co-hydroxyethylate) ion selective membrane for membrane capacitive deionization and redox flow battery", Thesis, University of chungnam (2014).
- D. S. Kim and Michael D. Guiver, "Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)", *J. Membr, Sci.*, 281, 156 (2006).
- W. J. Lee, H. R. Jung, and M. S. Lee, "Preparation and ionic conductivity of sulfonated-SEBS/SiO₂/plasticizer composite polymer electrolyte for polymer battery", *Solid State Ionics*, 164 (2003).
- 12. S. Y. Kim, H. S. Shin, Y. M. Lee, and C. N.

Jeong, "Properties of electro-responsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus", *J. Appl. Polym. Sci.*, **73**, 1675 (1999).

- S. Bryan and B. S. Pivovar, "Pervaporaion membranes in direct methanol fuel cells", *J. Membr. Sci.*, 154, 155 (1999).
- G. Tongzhai and S. J. Oh, "PVA/SSA/HPA composite membrane on the application to polymer electrolyte membrane fuel cell", *Membr. J.*, 16, 9 (2006).
- I. H. Kim, S. P. Kim, and S. I. Cheong, "Prepartion and characterization of the impregnation to porous membranes with PVA/PSSA-MA/THS-PSA for fuel cell applications", *Membr. J.*, 21, 299 (2011).
- S. Y. Lee, Y. M. Lee, and J. W. Rhim, "Poly(vinyl alcohol) membrane containing sulfonic acid groups for direct methanol fuel cell application", *Membr. J.*, 14, 240 (2004).
- 17. D. H. Kim, B. S. Lee, and J. W. Rhim,

"Preparation and characterization of PVA/PSSA-MA electrolyte membranes containing silica compounds and sulface fluorination for fuel cell applications", *J. Appl. Polym. Sci.*, **34**, 540 (2010).

- H. Y. Kim, M. S. Kang, and J. O. Won, "Proton exchange membrane using PVA(Poly(vinyl alcohol)/PSSA-MA(poly(styrene sulfonic acid-co-maleic acid)) and silica nano-particles", *J. Korean Membr. Soc.*, **156** (2004).
- T. Nithana and P. Akkaramongkolporn, "Neomycinloaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials", *Int. J. Pharm*, 448, 71 (2013).
- C. W. Lin and Y. F. Huang, "Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes", *J. Power Sources.*, **164**, 449 (2006).