DOI QR코드

DOI QR Code

Preparation of TiCoxFe1-x(x=0.50~1.00) System Metal Membrane for Hydrogen Separation

수소분리용 TiCoxFe1-x(x=0.50~1.00)계 금속막 제조

  • Received : 2015.04.10
  • Accepted : 2015.04.28
  • Published : 2015.04.30

Abstract

We have studied on the preparation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy, the characteristics of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy by X-ray diffractometer (XRD), pressure composition temperature (PCT) curve, scanning electron microscopy (SEM) and the $H_2-N_2$ gas mixture separation of $TiCo_xFe_{1-x}$(x=0.50~1.00)- stainless steel (SS) composite membranes. The formation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys with cubic crystal same as TiCo was confirmed by X-ray diffractometer. $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys showed the hysteresis at $120^{\circ}C$. As the Fe content of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys increased, the hysteresis was increased both range x=0.90~1.00 and x=0.55~0.60, and the range x=0.55~0.90 gave decreased hysteresis. $TiCo_{0.55}Fe_{0.45}$ alloy was the one showed the lowest hysteresis among them. The lowest value of hydrogen permeation pressure of $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membrane was $TiCo_{0.55}Fe_{0.45}$-SS composite membrane with the value of 2.5 atm at $120^{\circ}C$; otherwise, $TiCo_{0.90}Fe_{0.10}$-SS composite had the highest pressure value among the membranes with the value of 10 atm. $TiCo_{0.55}Fe_{0.45}$-SS composite membrane was the best to separate the $H_2-N_2$ gas mixture excellently among the $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membranes since $TiCo_{0.55}Fe_{0.45}$ had the least hysteresis, and hydrogen permeation pressure was the lowest with value of 2.5 atm.

$TiCo_xFe_{1-x}$(x=0.50~1.00)계 합금을 제조하고, 합금의 특성을 X-ray diffractometer (XRD), pressure composition temperature (PCT)곡선, scanning electron microscopy (SEM)에 의해 조사하였고, $TiCo_xFe_{1-x}$(x=0.50~1.00)-stainless steel (SS) 복합막에 대해 $H_2-N_2$ 혼합기체분리실험을 하였다. X-선 회절분석에 의하면 $TiCo_xFe_{1-x}$(x=0.50~1.00)계 합금의 결정구조는 TiCo와 같은 입방정구조이었다. $TiCo_xFe_{1-x}$(x=0.50~1.00)계 합금은 $120^{\circ}C$에서 hysteresis현상을 나타내었고, 합금 중 Fe의 양이 증가함에 따라 x=0.90~1.00과 0.50~0.55 범위에서는 hysteresis가 증가하였고, x=0.55~0.90 범위에서는 감소하였다. 가장 작은 hysteresis를 나타낸 합금은 $TiCo_{0.55}Fe_{0.45}$이었다. $120^{\circ}C$에서 $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS 복합막의 수소투과압력의 최저값은 $TiCo_{0.55}Fe_{0.45}$에서 2.5 atm을 나타내었고, 최대값은 $TiCo_{0.90}Fe_{0.10}$에서 10 atm을 나타내었다. $TiCo_xFe_{1-x}$(x=0.50~.00)-SS 복합막에 의하여 $120^{\circ}C$에서 $H_2-N_2$ 혼합기체를 분리하는 경우, 가장 우수한 복합막은 고압부의 수소투과압력이 2.5 atm으로 가장 낮고, hysteresis가 가장 작은 $TiCo_{0.55}Fe_{0.45}$-SS 복합막이었다.

Keywords

References

  1. A. L. Athayde, R. W. Bake, and P. Nguyen, "Metal composite membranes for hydrogen separation", J. Membr. Sci., 94, 299 (1994). https://doi.org/10.1016/0376-7388(94)00042-5
  2. H. Amandusson, L. G. Ekedahl, and H. Dannetun, "Hydrogen permeation through surface modified Pd and PdAg membranes", J. Membr. Sci., 193, 35 (2001). https://doi.org/10.1016/S0376-7388(01)00414-8
  3. J. Shu, B. E. W. Bongondo, B. Bp. A. Grandjean, A. Adnot, and S. kaliaguine, "Catalytic palladium-based membrane reactors: A review", Can. J. Chem. Eng., 69, 1036 (1991). https://doi.org/10.1002/cjce.5450690503
  4. V. Jayaraman and Y. S. Lin, "Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes", J. Membr. Sci., 104, 251 (1995). https://doi.org/10.1016/0376-7388(95)00040-J
  5. S. E. Nam and K. H. Lee, "Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier", J. Membr. Sci., 192, 177 (2001). https://doi.org/10.1016/S0376-7388(01)00499-9
  6. J. Shu, B. P. A. Grandjean, E. Ghali, and S. kaliaguine, "Simultaneous deposition of Pd and Ag on prous stainless steel by electroless plating synthesis and hydrogen", J. Membr, Sci., 77, 181 (1993). https://doi.org/10.1016/0376-7388(93)85068-8
  7. J. Shu, A. Adnot, B. P. A Grandjean, and S Kaliaguine, "Structurally stable composite Pd-Ag alloy membranes: Introduction of a diffusion barrier", Thin Solid Film, 286, 72 (1996). https://doi.org/10.1016/S0040-6090(96)08544-6
  8. S. Uemiya, T. Matsuda, and E. Kikuchi, "Hydrogen permeable palladium-silver alloy membrane supported on prous ceramics", J. Membr. Sci., 56, 315 (1991). https://doi.org/10.1016/S0376-7388(00)83041-0
  9. G. Xomeritakis and Y. S. Lin, "Fabrication of thin metallic membranes by MOCVD and sputting", J. Membr. Sci., 133, 217 (1997). https://doi.org/10.1016/S0376-7388(97)00084-7
  10. K. j. Bryden and J. Y. Ying, "Bulletin of the government industrial research institutetute", Mater. Sci. Eng. A, 204, 140 (1995). https://doi.org/10.1016/0921-5093(95)09950-6
  11. M. Konno, M. Shindo, S. Sugawara, and S. Saito, "A composite palladium and porous aluminium oxide membrane for hydrogen gas permeation", J. Membr, Sci., 37. 193 (1988). https://doi.org/10.1016/S0376-7388(00)83072-0
  12. S. Uemiya, M. Kajiwara, M. Koseki, and T. Kojima, "Preparation of palladium composite membrane using CVD technique", J. Surf. Finish. Soc. Jpn., 45, 1310 (1994). https://doi.org/10.4139/sfj.45.1310
  13. S. Morooka, S. C. Yan, S. Yokoyama, and K. Kusakabe, "Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall", Sep. Sci., Tech., 30, 2877 (1995). https://doi.org/10.1080/01496399508013720
  14. K. L. Yeung and A. Varma, "Novel preparation techniques for thin metal-ceramic composite membranes", AIChE J., 41, 2131 (1995). https://doi.org/10.1002/aic.690410912
  15. G. Xomeritakis and Y. S. Lin, "Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition", J. Membr. Sci., 120, 261 (1996). https://doi.org/10.1016/0376-7388(96)00149-4
  16. J. Shu, B. P. A. Grandjean, S. Kaliaguine, P. Ciavarella, A. Giroir-Fendler, and J. A. Dalmon, "Gas permeation and isobutane dehydrogenation over very thin Pd/ceramic membranes", Can. J. Chem. Eng., 75, 712 (1997).
  17. H. B. Zhao, K. Planz, J. H. Gu, A. W. Li, N. Storh, H. Brunner, and G. X. Xiong, "Preparation of palladium composite membranes by modified electroless plating procedure", J. Membr. Sci., 142, 147 (1998). https://doi.org/10.1016/S0376-7388(97)00287-1
  18. G. Y. Meng, L. Huang, M. Pan, C. S. Chen, and D. K. Peng, "Preparation and characterization of Pd and Pd-Ni alloy membranes on porous substrates by MOCVD with mixed metal ${\beta}$-diketone precursors", Mater. Res. Bull., 32, 385 (1997). https://doi.org/10.1016/S0025-5408(97)00005-6
  19. J. F. Deng, Z. Cao, and B. Zhou, "Catalytic dehydrogenation of ethanol in a metal-modified alumina membrane reactor", App. Catal. A (General), 132, 9 (1995). https://doi.org/10.1016/0926-860X(95)00172-7
  20. G. Meunier and J. P. Manaud, "Thin film permeation membranes for hydrogen purification", Int. J. Hydrogen Energy, 17, 599 (1992). https://doi.org/10.1016/0360-3199(92)90072-5
  21. J. P. Collins and J. D. Way, "Preparation and characterization of a composite palladium-ceramic membrane", Ind. Eng. Chem. Res., 32, 3006 (1993). https://doi.org/10.1021/ie00024a008
  22. J. F. Deng and J. T. Way, "Formaldehyde production by catalytic dehydrogenation of methanol in inorganic membrane reactors", Appl. Catal. A (General), 109, 63 (1994). https://doi.org/10.1016/0926-860X(94)85003-8
  23. G. Barbieri, V. Violante, F. P. D. Maio, A. Ciscuoli, and E. Drioli, "Methane steam reforming analysis in a palladium-based catalytic membrane teactor", Ind. Eng. Chem. Res., 36, 3369 (1997). https://doi.org/10.1021/ie970033w
  24. K. L. Yeung, J. M. Sebastian, and A. Varma, "Novel preparation of Pd/Vycor composite membranes", Catalysis Today, 25, 231 (1995). https://doi.org/10.1016/0920-5861(95)00077-S
  25. J. Shu, B. P. A. Grandjean, and S. Kaliaguine, "Morphological study of hydrogen permeable Pd membranes", Thin Solid Films, 252, 26 (1994). https://doi.org/10.1016/0040-6090(94)90820-6
  26. N. Jemaa, J. Shu, S. kaliaguine, and B. P. A. Grandjean, "Thin palladium film formation on shot peening modified porous stainless steel substrates", Ind. Eng. Chem. Res., 35, 973 (1996). https://doi.org/10.1021/ie950437t
  27. P. P. Mardilovich, Y She, Y. H. Ma, and M. H. Rei, "You have full text access to this contect defect-free palladium membranes on porous stainless- steel support", AIChE J., 44, 310 (1998). https://doi.org/10.1002/aic.690440209
  28. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, "Separation of hydrogen through palladium thin film supported on a porous glass tube", J. Membr. Sci., 56, 303 (1991). https://doi.org/10.1016/S0376-7388(00)83040-9
  29. S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, "Preparation of supported thin palladium-silver alloy membranes and their characteristics for hydrogen separation", Gas Sep. Purif., 5, 261 (1991). https://doi.org/10.1016/0950-4214(91)80035-4
  30. Z. Y. Li, H. Maeda, K. Kussakabe, S. Morooka, H. Anzai, and S. Akiyama, "Preparation of palladium-silver alloy membranes for hydrogen separaion by the spray pyrolysis method", J. Membr. Sci., 78, 247 (1993). https://doi.org/10.1016/0376-7388(93)80004-H
  31. O. Garneir, J. Shu, and B. P. A. Grandjean, "Membrane-assisted two-step process for methane conversion into hydrogen and higher hydrocarbons", Ind. Eng. Chem. Res., 36, 553 (1997). https://doi.org/10.1021/ie960547f
  32. E. Gobina and R. Hughes, "Ethane dehydrogenation using a high-temperature catalytic membrane reactor", J. Membr. Sci., 90, 11 (1994). https://doi.org/10.1016/0376-7388(94)80030-8
  33. Y. Cao, B. S. Liu, and J. F. Deng, "Catalytic dehydrogenation of ethanol in Pdsingle bondM/${\gamma}$-Al2O3 composite membrane reactors", Appl. Catal. A (General), 154, 129 (1997). https://doi.org/10.1016/S0926-860X(96)00363-8
  34. M. L. Trudeau, K. J. Bryden, M. Braunovic, and J. Y. Ying, "Fretting studies of nanocrystalline Pd, Pd-Ag and Pd-Y films", Nanostruct. Mater., 9, 759 (1997). https://doi.org/10.1016/S0965-9773(97)00164-5
  35. V. M. Gryaznov, O. S. Serebryannikova, Y. M. Seov, M. M. Ermilova, A. N. Karavanov, A. P. Mischenko, and N. V. Orekhava, "Preparation and catalysis over palladium composite membranes", Appl. Catal. A, 96, 15 (1993). https://doi.org/10.1016/0926-860X(93)80003-9
  36. H. Sakaguchi, H. Nagai, G. Adachi, and J. Shiokawa, "Hydrogen separation using LaNi5 films", J. Less-Common metals, 126, 83 (1986). https://doi.org/10.1016/0022-5088(86)90251-1
  37. M. Chai, Y. Yamashita, M. Machida, K. Eguchi, and H. Arai, "Catalytic platinum-based membrane reator for removal $H_2S$ from natural gas streams", J. Membr. Sci., 94, 111 (1994). https://doi.org/10.1016/0376-7388(93)E0140-F
  38. B. S. Liu, H. Li, Y. Cao, J. F. Deng, C. Sheng, and S. Zhou, "Preparation and characterization of Ni-P amorphous alloy/ceramic composite membrane", J. Membr. Sci., 135, 33 (1997). https://doi.org/10.1016/S0376-7388(97)00130-0
  39. M. R. Chai, Y. Yamashita, M. Machida, K. Eguchi, and H. Arai, "Preparation and characterization of metal-dispersed alumina membranes for selective separation of hydrogen", J. Membr. Sci., 97, 199 (1994). https://doi.org/10.1016/0376-7388(94)00162-R
  40. W. Li, G. X, Xiong, J. H. Gu, and L. B. Zheng, "Preparation of Pd/ceramic composite membrnae 1. Improvement of the conventional preparation technique", J. Membr. Sci., 110, 257 (1996). https://doi.org/10.1016/0376-7388(95)00249-9
  41. S. K. Lee and S. R. Hong, "Preparation and gas permeation properties of PDMS-HNT nanotube composite membrane", Membr. J., 24, 185 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.185
  42. S. R. Hong and H. K. Lee, "Preparation and permeation characterisitcs of PTMSP-Silica/PEI composite membrane", Membr. J., 18, 146 (2008).
  43. Y. I. Jung and H. K. Lee, "Hydrocarbon gas permeation characteristics of PTMSP/LDH composite membranes", Membr. J., 24, 423 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.423