DOI QR코드

DOI QR Code

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet

입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구

  • Yoon, Jungsoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoon, Youngbin (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2015.03.10
  • Accepted : 2015.05.08
  • Published : 2015.06.01

Abstract

Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.

초공동 수중운동체의 연료 및 산화제 분사기 설계를 위한 동축형 분사기를 이용한 입자 부상유동의 특성에 대한 실험적 연구가 수행되었다. 입자와 유동의 특성을 계측하기 위하여 $1{\mu}m$$42{\mu}m$의 입자를 동시에 분사하였다. 작은 입자($1{\mu}m$)와 큰 입자($42{\mu}m$)는 각각 유동장와 연료의 특성을 대표한다. 작은 입자는 PIV 기법을 사용하고 큰 입자는 PTV 기법을 통하여 속도장을 측정하였다. 이를 통하여 입자의 로딩비가 증가 할수록 유동의 축방향 속도 변화가 크다는 것을 알 수 있었고, 입자 분포는 높은 와도를 지니는 혼합영역 바깥 부분에 주로 분포한다는 것을 알 수 있다.

Keywords

References

  1. Foot, J.P., Lineberry, B.R. and Winkelman, B.C., "Investigation of Aluminum Particle Combustion for Underwater Propulsion Applications," 32nd Joint Propulsion Conference and Exhibit, Orlando, F.L., U.S.A., AIAA Paper 96-3086, July 1996.
  2. Chung, J.N. and Troutt, J.N., "Simulation of Particle Dispersion in an Axisymmetric Jet," Journal of Fluid Mechanics, Vol. 186, No. 1, pp. 199-222, 1988. https://doi.org/10.1017/S0022112088000102
  3. Liu, H., Cao, W., Xu, J., Li, W., and Sun, Z., "Dispersion Mode of Granular Jet in a Coaxial Air Jet," Powder Technology, Vol. 217, No. 1, pp. 566-573, 2012. https://doi.org/10.1016/j.powtec.2011.11.022
  4. Gui, N., Fan, J. and Chen, S., "The Effects of Flow Structure and Particle Mass Loading on Particle Dispersion in Particle-laden Swirling Jets," Physics Letters A, Vol. 375, No. 4, pp. 839-844, 2011. https://doi.org/10.1016/j.physleta.2010.12.049
  5. Rhodes, M.J., Introduction to Particle Technology, 2nd ed., John Wiley & Sons Inc, New York, N.Y., U.S.A., 2008.
  6. Cheng, Y., Pothos, S. and Diez, F.J., "Phase Discrimination Method for Simultaneous Two-phase Separation in Time-resolved Stereo PIV Measurements," Experiments in Fluids, Vol. 49, No. 6, pp. 1375-1391, 2010. https://doi.org/10.1007/s00348-010-0878-0
  7. Khalitov, D.A. and Longmire, E.K., "Simultaneous Two-phase PIV by Two-parameter Phase Discrimination," Experiments in Fluids, Vol. 32, No. 2, pp. 252-268, 2002. https://doi.org/10.1007/s003480100356
  8. Udrea, D.D., Bryanston-Cross, P.J., Lee, W. K. and Funes-Gallanzi, M., "Two Sub-pixel Processing Algorithms for High Accuracy Particle Centre Estimation in Low Seeding Density Particle Image Velocimetry," Optics Laser Technology, Vol. 28, No. 5, pp. 389-396, 1996. https://doi.org/10.1016/0030-3992(95)00112-3
  9. Adrian, R.J., "Particle-Imaging Techniques for Experimental Fluid Mechanics," Annu Rev. Fluid Mech., Vol. 23, No. 1, pp. 261-304, 1991. https://doi.org/10.1146/annurev.fl.23.010191.001401
  10. Zhang, W., Wang, Y. and Lee, S.J., "Simultaneous PIV and PTV Measurements of Wind and Sand Particle Velocities," Experiments in Fluids, Vol. 45, No. 2, pp. 241-256, 2008. https://doi.org/10.1007/s00348-008-0474-8
  11. Fessler, J.R., Kulick, J.D. and Eaton, J.K., "Preferential Concentration of Heavy Particles in a Turbulent Channel Flow," Physics of Fluids, Vol. 6, No. 11, pp. 3742-3749, 1994. https://doi.org/10.1063/1.868445