DOI QR코드

DOI QR Code

노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings

  • Jeong, Sooin (Industrial Liaison Innovation Center, Pusan National University) ;
  • Choi, Byoung-ik (Rolls-Royce University Technology Center, Pusan National University) ;
  • Kim, Kuisoon (Department of Aerospace Engineering, Pusan National University)
  • 투고 : 2015.03.13
  • 심사 : 2015.05.14
  • 발행 : 2015.06.01

초록

본 연구에서는 초음속 충동형 터빈의 노즐과 1단 로터 사이 축 간극 거리를 달리하며 3차원 비정상 유동해석을 수행하고 초음속 터빈의 성능 특성을 분석하였다. 계산결과는 기존의 초음속 터빈 효율 경향과 잘 일치하였으며 특정 축 간극 구간에서 효율의 급격한 감소를 보이고 그 이후에는 큰 변화가 없는 구간이 존재함을 확인하였다. 로터 앞전에서 발생하는 충격파의 영향이 노즐 끝단에 전달이 되는 정도에 따라 터빈 내의 여러 성능 특성이 달라짐을 살펴보았고 터빈 스팬 별 손실 특성에서 축 간극이 커질수록 허브 영역에서의 손실이 증가하고 미드스팬 이상의 영역에서 손실이 감소함을 보였다.

In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.

키워드

참고문헌

  1. Gronman, A., Turunen-Saaresti, T., Roytta, P. and Jaatinen-Varri, A., "Influence of The Axial Turbine Design Parameters on The Stator-rotor Axial Clearance Losses," Proc. IMechE Part A: J. Power Energy, Vol. 228, No. 5, pp. 482-490, 2014. https://doi.org/10.1177/0957650914531949
  2. Jeong, E., Kang, S., Shin, D., Park, P. and Kim, J., "Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance," Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 2, pp. 78-86, 2006.
  3. Park, P., Jeong, E. and Kim, J., "Numerical Investigation of the Effect of Nozzle-Rotor Axial Clearance on the Supersonic Turbine Performance," 2006 KSPE Spring Conference, Changnyeong-gun, Gyeongsangnam-do, Republic of Korea, pp. 331-336, May 2006.
  4. Gronman, A. and Turunen-Saaresti, T., "Design and Off-design Performance of a Supersonic Axial Flow Turbine with Different Stat0r-rotor Axial Gaps," Proc. IMechE Part A: J. Power Energy, Vol. 225, No. 5, pp. 497-503, 2011. https://doi.org/10.1177/0957650910396417
  5. Griffin, L.W. and Dorney, D.J., "Simulations of the Unsteady Flow through the Fastrac Supersonic Turbine," ASME Journal of Turbomachinery, Vol. 122, No. 2, pp. 225-233, 2000. https://doi.org/10.1115/1.555453
  6. Gorrell, S.E., Okiisji, T.H. and Copenhaver, W.W., "Stator-Rotor Interactions in a Transonic Compressor Part 1: Effect of Blade-Row Spacing on Performance," ASME Journal of Turbomachinery, Vol. 125, No. 2, pp. 328-335, 2003. https://doi.org/10.1115/1.1540119
  7. Balje, O.E., Turbomachines: A Guide to Design, Selection, and Theory, John Wiley & Sons Inc., New York, N.Y., U.S.A., June 1981.
  8. Jeong, S., Kim, K. and Jeong, E., "Numerical Study of the Nozzle-Rotor Axial Gap Effect on the Supersonic Turbine Performance," 2010 KSPE Fall Conference, Seogwipo-si, Jeju-do, Republic of Korea, pp. 160-163, Nov. 2010.
  9. Huzel, D.K. and Huang, D.H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, AIAA Press., Washington, D.C., U.S.A., 1992.
  10. Denton, J.D., "Loss Mechanisms in Turbomachines," ASME Journal of Turbomachinery, Vol. 115, Issue 4, pp. 621-656, Oct. 1993. https://doi.org/10.1115/1.2929299