DOI QR코드

DOI QR Code

The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics

  • Lee, Ku Tak (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jung Soo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2015.06.21
  • Accepted : 2015.07.23
  • Published : 2015.07.31

Abstract

$Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ (BNKT) lead-free piezoelectric ceramics modified by $LaMnO_3$ (LM) were fabricated by conventional solid-state method. The crystal structure and the morphology of the lead free ceramics were analyzed by XRD (X-ray diffraction) and FE-SEM (Field Emission Scanning Electron Microscopy). The LM modified BNKT ceramics have a phase transition from ferroelectric tetragonal to non-polar pseudo-cubic. Despite decreases in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysteresis loops, the electric-field induced strain properties were significantly enhanced by the LM modification. The highest value of $S_{max}/E_{max}=412pm/V$ at an applied electric field of 5 kV/mm was found in BNKT-0.01LM ceramic.

Keywords

References

  1. D. Viehland and J. F. Li, "Investigations of Electrostrictive $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ceramics under High-Power Drive Conditions: Importance of Compositional Fluctuations on Residual Hysteresis," J. Appl. Phys., 89 [3] 1826-35 (2001). https://doi.org/10.1063/1.1335651
  2. K. Shiratsuyu, K. Hayashi, A. Ando, and Y. Sakabe, "Piezoelectric Characteristic of Low Temperature Fired $Pb(Zr,Ti)O_3-Pb(Ni,Nb)O_3$ Ceramics," Jpn. J. Appl. Phys., 39 5609-13 (2000). https://doi.org/10.1143/JJAP.39.5609
  3. G. Du, R. Liang, J. Wang, L. Wang, W. Zhang, G. Wang, and X. Dong, "Evidence of Macro-Micro Domain Transition in Poled PMN-PZT Ceramics," Ceram. Int., 39 9299-303 (2013). https://doi.org/10.1016/j.ceramint.2013.05.044
  4. P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 5049-62 (2009). https://doi.org/10.1007/s10853-009-3643-0
  5. D. H. Lee, S. H. Lee, S. G. Lee, K. T. Lee, and Y. H. Lee, "Piezoelectric Properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3+0.01wt%$ ZnO Ceramics with a Sintering Temperature (in Korean)," J. KIEEME, 24 [7] 543-46 (2011).
  6. T. Takenaka, K. Maruyama, and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 2236-39 (1991). https://doi.org/10.1143/JJAP.30.2236
  7. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee, and J. Rodel., "Relaxor/ferroelectric Composites: a Solution in the Quest for Practically Viable Lead-free Incipient Piezoceramics," Adv. Funct. Mater., 24 356-62 (2014). https://doi.org/10.1002/adfm.201302102
  8. F. Ni, L. Luo, X. Pan, W. Li, and J. Q. Zhu,"Effects of A-site Vacancy on the Electrical Properties in Lead-Free Nonstoichiometric Ceramics $Bi_{0.5+x}(Na_{0.82}K_{0.18})_{0.5-3x}TiO_3\;and\;Bi_{0.5+y}(Na_{0.82}K_{0.18})_{0.5}TiO_3$," J. Alloys. Compd., 541 150-56 (2012). https://doi.org/10.1016/j.jallcom.2012.06.129
  9. A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, "Dielectric, Ferroelectric and Field-Induced Strain Behavior of $K_{0.5}Na_{0.5}NbO_3-modified\;Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ Lead-free Ceramics," Ceram. Int., 38 4143-49 (2012). https://doi.org/10.1016/j.ceramint.2012.01.074
  10. J. Rodel, W. Jo, K. G. Webber, T. P. Seifert, E. M. Anton, and Q. R. Yin, "Perspective on the Development of Leadfree Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  11. K. S. Lee and J. H. Koh, "Characterization of Agdoped $0.9(Na_{0.52}K_{0.48})\;NbO_3-0.1LiTaO_3$ Ceramics (in Korean)," J. KIEEME, 23 [7] 517-20 (2010).
  12. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}(Ti_{1-x}Hf_x)O_3$ Ceramics," Jpn. J. Appl. Phys., 49 041054-55 (2010).
  13. Y. Zhang, A. L. Ding, P. S. Qiu, X. Y. He, X. S. Zheng, H. R. Zeng, and Q. R. Yin, "Effect of La Content on Characterization of PLZT Ceramics," Mater. Sci. Eng., B99 360-62 (2003).
  14. K. N. Pham, T. H. Dinh, H. Y. Lee, Y. M. Kong, and J. S. Lee, "Effects of $Bi(Mg_{1/2}Sn_{1/2})O_3$ Modification on the Dielectric and Piezoelectric Properties of $Bi_{1/2}(Na_{0.8}K_{0.2})_{1/2}TiO_3$ Ceramics (in Korean)," J. Korean Ceram. Soc., 49 [3] 266-71 (2012). https://doi.org/10.4191/kcers.2012.49.3.266
  15. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang, J. S. Lee, and I. W. Kim, "Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Ceramics," Trans. Electr. Electron. Mater., 12 [2] 64-7 (2011). https://doi.org/10.4313/TEEM.2011.12.2.64
  16. A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee, and I. W. Kim, "Phase Transitions and Large Electric Fieldinduced Strain in $BiAlO_3-Modified\;Bi_{0.5}(Na,K)_{0.5}TiO_3$ Lead- Free Piezoelectric Ceramics," Curr. Appl. Phys., 10 1174-81 (2010). https://doi.org/10.1016/j.cap.2010.02.006
  17. J. E. Daniels, W. Jo, J. Rodel, and J. L Jones, "Electric- Field Induced Phase Transformation at a Lead-Free Morphotropic Phase Boundary: Case Study in a $93%(Bi_{0.5}Na_{0.5})TiO_3-7%BaTiO_3$ Piezoelectric Ceramic," Appl. Phys. Lett., 95 032904-06 (2009). https://doi.org/10.1063/1.3182679
  18. G. Picht, J. Topfer, and E. Hennig, "Structural Properties of $(Bi_{0.5}Na_{0.5})_{1-x}Ba_xTiO_3$ Lead-Free Piezoelectric Ceramics," J. Eur. Ceram. Soc., 30 3445-53 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.042
  19. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and its Thermal Evolution of Lead Free $(Bi_{1/2}Na_{1/2})TiO_3-6mol%BaTiO_3$," J. Appl. Phys., 110 074106-18 (2011). https://doi.org/10.1063/1.3645054
  20. A. Maqbool, A. Hussain, J. U. Rahman, J. K. Park, T. G. Park, J. S. Song, and M. H. Kim, "Effect of $SrZrO_3$ Substitution on Structural and Electrical Properties of Lead-Free $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3$ Ceramics," Phys. Status Solidi A, 211 1709-14 (2014). https://doi.org/10.1002/pssa.201330564

Cited by

  1. Effect of Nb Doping on the Dielectric and Strain Properties of Lead–free 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 Ceramics vol.53, pp.2, 2016, https://doi.org/10.4191/kcers.2016.53.2.145
  2. Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.04