DOI QR코드

DOI QR Code

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoonjoo (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryong (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo-Teck (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Duck-Kyun (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Younghee (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2015.06.22
  • Accepted : 2015.07.22
  • Published : 2015.07.31

Abstract

Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

Keywords

References

  1. C. Sanchez, H. Arribart, and M. M. G. Guille, "Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems," Nat. Mater., 4 [4] 277-88 (2005). https://doi.org/10.1038/nmat1339
  2. A. A. AI-Munajjed, N. A. Plunkett, J. P. Gleeson, T. Weber, C. Jungreuthmayer, T. Levingstone, J. Hammer, and F. J. O'Brien, "Development of a Biomimetic Collagen-Hydroxyapatite Scaffold for Bone Tissue Engineering Using a SBF Immersion Technique," J. Biomed. Mater. Res., 90B [2] 584-91 (2009). https://doi.org/10.1002/jbm.b.31320
  3. I. C. Gebeshuber, "Biotribology Inspires New Technologies," Nano Today, 2 [5] 30-37 (2007). https://doi.org/10.1016/S1748-0132(07)70141-X
  4. F. Song, A. K. Soh, and Y. L. Bai, "Structural and Mechanical Properties of the Organic Matrix Layers of Nacre," Biomaterials, 24 [20] 3623-31 (2003). https://doi.org/10.1016/S0142-9612(03)00215-1
  5. A. P. Jackson, J. F. V. Vincent, and R. M. Turner, "The Mechanical Design of Nacre," Proc. R. Soc. London, B Biol. Sci., 234 [1277] 415-440 (1988). https://doi.org/10.1098/rspb.1988.0056
  6. A. G. Checa, J. H. E. Cartwright, and M. -G. Willinger, "Mineral Bridges in Nacre," J. Struct. Bio., 176 [3] 330-39 (2011). https://doi.org/10.1016/j.jsb.2011.09.011
  7. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, "Deformation Mechanisms in Nacre," J. mater. Res., 16 [9] 2485-93 (2001). https://doi.org/10.1557/JMR.2001.0340
  8. J. Y. Sun and B. Bhushan, "Hierarchical Structure and Mechanical Properties of Nacre: a Review," RSC Advances, 2 [20] 7617-32 (2012). https://doi.org/10.1039/c2ra20218b
  9. A. G. Evans, Z. Suo, R. Z. Wang, I. A. Aksay, M. Y. He, and J. W. Hutchinson, "Model for the Robust Mechanical Behavior of Nacre," J. Mater. Res., 16 [9] 2475-84 (2001). https://doi.org/10.1557/JMR.2001.0339
  10. J. Wang, Q. Chang, and Z. Tang, "Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre," Chem. Soc. Rev., 41 [3] 1111-29 (2012). https://doi.org/10.1039/C1CS15106A
  11. M. Sarikaya, K. E. Gunnison, M. Yasrebi, and I. A. Aksay, "Mechanical Property-Microstructural Relationships in Abalone Shell," MRS Proceedings, 174 109-16 (1989). https://doi.org/10.1557/PROC-174-109
  12. Y. J. Lee, B. Y. Kim, D. G. Shin, S. R. Kim, W. T. Kwon, and Y. H. Kim "Formation of Asperities on the Plate-Like Alumina Particles by Molten-Salt Method," J. Korean Ceram. Soc., 51 [6] 560-65 (2014). https://doi.org/10.4191/kcers.2014.51.6.560
  13. N. A. Kotov, I. Dekany, and J. H. Fendler, "Layer-by-Layer Self-assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films," J. Phys. Chem., 99 [35] 13065-69 (1995). https://doi.org/10.1021/j100035a005
  14. Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, "Nanostructured Artificial Nacre," Nat. Mater., 2 413-18 (2003). https://doi.org/10.1038/nmat906
  15. P. Podsiadlo, Z. Tang, B. S. Shim, and N. A. Kotov, "Counterintuitive Effect of Molecular Strength and Role of Molecular Rigidity on Mechanical Properties of Layer-by-Layer Assembled Nanocomposites," Nano Lett., 7 [5] 1224-31 (2007). https://doi.org/10.1021/nl0700649
  16. A. Sellinger, P. M. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, and C. J. Brinker, "Continuous Self-assembly of Organic-Inorganic Nanocomposite Coatings that Mimic Nacre," Nature, 394 256-60 (1998). https://doi.org/10.1038/28354
  17. R. Chen, C. Wang, Y. Huang, and H. Le, "An Efficient Biomimetic Process for Fabrication of Artificial Nacre with Ordered-Nanostructure," Mater. Sci. Eng. C, 28 [2] 218-22 (2008). https://doi.org/10.1016/j.msec.2006.12.008
  18. Y. Zhang and J. R. G. Evans, "Alignment of Layered Double Hydroxide Platelets," Coll. Surf. A Physicochem. Eng. Asp., 408 71-78 (2012). https://doi.org/10.1016/j.colsurfa.2012.05.033
  19. M. E. Launey, E. Munch, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "A Novel Biomimetic Approach to the Design of High-Performance Ceramic-Metal Composites," J. R. Soc. Interface, 7 [46] 741-53 (2010). https://doi.org/10.1098/rsif.2009.0331
  20. K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, H. M. Lim, H. S. Kim, and Y. Kim, "Preparation of $Al_2O_3$ Platelet/PMMA Composite and its Mechanical/Thermal Characterization," J. Korean Ceram. Soc., 49 [5] 438-41 (2012). https://doi.org/10.4191/kcers.2012.49.5.438
  21. K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, D. G. Shin, H. M. Lim, H. S. Kim, and Y. Kim, "Bio-inspired Synthesis of a Silicate/PMMA Composite," J. Korean Ceram. Soc., 51 [1] 7-10 (2014). https://doi.org/10.4191/kcers.2014.51.1.007
  22. Y. Sarikaya, M.Onal, B. Baran, and T. Alemdaroglu, "The Effect of Thermal Treatment on Some of the Physicochemical Properties of a Bentonite," Clays and Clay Minerals, 48 [5] 557-62 (2000). https://doi.org/10.1346/CCMN.2000.0480508
  23. F. Barthelat, H. Tang, P. D. Zavattieri, C. -M. Li, and H. D. Espinosa, "On the Mechanics of Mother-of-Pearl: A Key Fracture in the Material Hierarchical Structure," J. Mech. Phy. Solids, 55 306-37 (2007). https://doi.org/10.1016/j.jmps.2006.07.007
  24. M. A. Meyers, A. Y. -M. Lin, P. -Y. Chen, and J. Muyco, "Mechanical Strength of Abalone Nacre: Role of the Soft Organic Layer," J. Mech. Behav. Biomed. Mat., 1 [1] 76-85 (2008). https://doi.org/10.1016/j.jmbbm.2007.03.001
  25. F. Barthelat, C. -M. Li, C. Comi, and H. D. Espinosa, "Mechanical Properties of Nacre Constituents and their Impact on Mechanical Performance," J. Mater. Res., 21 [8] 1977-86 (2006). https://doi.org/10.1557/jmr.2006.0239

Cited by

  1. Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging vol.16, pp.6, 2015, https://doi.org/10.4313/TEEM.2015.16.6.351
  2. Composition Dependence and Optical Properties of Polymethyl Methacrylate/Alumina Nanocomposite in the IR Region Determined by Kramers-Kronig Relation vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.01
  3. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes vol.12, pp.1, 2015, https://doi.org/10.1088/1748-3190/12/1/016002