DOI QR코드

DOI QR Code

Effect of Extraction Methods on the Extraction Yield of Total Lipid and Arachidonic Acid from Single Cell Oil, Mortierella sp.

추출방법이 모르티에렐라(Mortierella)속 유래 단세포유지 지방질과 아라키돈산 추출 수율에 미치는 영향

  • Received : 2014.12.21
  • Accepted : 2015.03.23
  • Published : 2015.06.30

Abstract

An oleaginous fungus was isolated from soil and identified as Mortierella sp. (M-12) for producing arachidonic acid (AA). Cell disruption methods, extraction methods, and particle sizes of freeze-dried biomass were tested to achieve maximum extraction of total lipids and AA. M-12 grown in glucose yeast media at $25^{\circ}C$ for 7 days contained 35.5% total lipid, and 47% of the total lipid was AA. Lipid extraction yield from wet biomass was shown to be similar to that in a dry state. Maximum lipid extraction was achieved using a mixture of chloroform and methanol (2:1) as an extraction solvent. Different mechanical cell disruption methods did not affect lipid extraction yields. The smaller the particle size of the biomass, the better the lipid extraction yield was observed. Particle size of biomass was shown to more strongly affect lipid extraction than extraction time. The highest AA content was observed in the class of neutral lipids.

아라키돈산(AA)은 포유동물에 식품을 통해 섭취되는 필수지방산으로써 동물조직에서 추출되어 이용되어 왔다. 경제적으로 AA를 생산하기 위하여 토양으로부터 AA를 다량으로 생산하는 모르티에렐라 종으로 확인된 M-12균주를 선발하였다. 균체로부터 지방질과 AA를 효율적으로 추출하기 위하여 전처리 공정, 공정 순서, 추출 용매, 추출 방식, 입자 크기 등을 달리하여 추출 효율을 분석하였다. M-12를 GY배지로 $25^{\circ}C$에서 7일 배양하여 동결건조한 시료를 사용하였을 때 지질방 중 47% 이상의 AA를 함유하고 있었다. 지방질 추출 효율은 균체의 젖은 상태와 건조 상태로 나눈 전처리 공정에 따라 큰 차이를 보이지 않았다. 클로로폼과 메탄올(2:1) 용액을 추출 용매로 사용하였을 때 가장 높은 추출율을 보였으며 헥세인이나 아이소헥세인도 우수한 추출 효율을 나타내었다. 균체를 분쇄하기 위하여 blending, ultrasonication, Ultra-turrex homogenization 등 기계적 분쇄방법을 사용하였으나 추출 효율은 큰 차이를 보이지 않았다. 균체 입자가 고울수록 유지의 추출 효율은 높게 나타났고 추출 시간보다는 추출 시 입자 크기가 추출 효율에 더 큰 영향을 주는 것으로 나타났다. 그러나 추출된 유지를 분획하여 지방산 조성을 분석한 결과 neutral lipids 내에 AA의 함량이 65.3-68.9%로 가장 높게 나타났다.

Keywords

References

  1. Fukaya T, Gondaira T, Kashiyae Y, Kotani S, Ishikura Y, Fujikawa S, Kiso Y, Sakakibara M. Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats. Neurobiol. Aging 28: 1179-1186 (2007) https://doi.org/10.1016/j.neurobiolaging.2006.05.023
  2. Granstrom E. The arachidonic acid cascade. The prostaglandins, thromboxanes and leukotrienes. Inflammation 8: S15-25 (1984) https://doi.org/10.1007/BF00915709
  3. Goodnight Jr SH, Harris WS, Connor WE, Illlngworth DR. Polyunsaturated Fatty acids, hyperlipidemia, and thrombosis. Arterioscl. Throm. Vas. 2: 87-113 (1982) https://doi.org/10.1161/01.ATV.2.2.87
  4. Haag M. Essential fatty acids and the brain. Can. J. Psychiat. 48: 195-203 (2003) https://doi.org/10.1177/070674370304800308
  5. Mann NJ, Johnson LG, Warrick GE, Sinclair AJ. The arachidonic acid content of the Australian diet is lower than previously estimated. J. Nutr. 125: 2528-2535 (1995)
  6. Park YS, Park HJ, Won SI. Association of Fatty Acid Intake and Dyslipidemia in Korean Adults: Korea National Health and Nutrition Survey, 1998-2007. J. East Asian Soc. Dietary Life 21: 789-807 (2011)
  7. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 60: 189-194 (1994) https://doi.org/10.1093/ajcn/60.2.189
  8. Mann NJ, Johnson LG, Warrick GE, Sinclair AJ. The arachidonic acid content of the Australian diet is lower than previously estimated. J. Nutr. 125: 2528-2535 (1995)
  9. Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H. Production of arachidonic acid by Mortierella fungi. Appl. Microbiol. Biot. 31: 11-16 (1989)
  10. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnol. 22: 739-745 (2004) https://doi.org/10.1038/nbt972
  11. Eroshin VK, Dedyukhina EG, Chistyakova TI, Zhelifonova VP, Kurtzman CP, Bothast RJ. Arachidonic-acid production by species of Mortierella. World J. Microb. Biot. 12: 91-96 (1996) https://doi.org/10.1007/BF00327809
  12. Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807-815 (2004) https://doi.org/10.1016/j.biochi.2004.09.017
  13. Zhu M, Zhou PP, Yu LJ. Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresource Technol. 84: 93-95 (2002) https://doi.org/10.1016/S0960-8524(02)00028-7
  14. Manirakiza P, Covaci A, Schepens P. Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J. Food Compos. Anal. 14: 93-100 (2001) https://doi.org/10.1006/jfca.2000.0972
  15. Duthie AH, Patton S. Purification of phospholipids recovered from thin-layer chromatograms for infrared spectral analysis. J. Lipid Res. 6: 320-322 (1965)
  16. Clarke PR, Hill CR. Physical and chemical aspects of ultrasonic disruption of cells. J. Acoust. Soc. Am. 47: 649-653 (1970) https://doi.org/10.1121/1.1911940
  17. Dunn B, Wobbe CR. Preparation of protein extracts from yeast. Curr. Protoc. Mol. Biol. 13: 1-9 (2001)
  18. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, DH Byrne. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669-675 (2006) https://doi.org/10.1016/j.jfca.2006.01.003
  19. Rouser G, Kritchevsky G, Simon G, Nelson GJ. Quantitative analysis of brain and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids 2: 37-40 (1967) https://doi.org/10.1007/BF02531998
  20. Freeman CP, West D. Complete separation of lipid classes on a single thin-layer plate. J. Lipid Res. 7: 324-327 (1966)
  21. Lee SY, Jung MY, Yoon SH. Optimization of the refining process of camellia seed oil for edible purposes. Food Sci. Biotechnol. 23: 65-73 (2014) https://doi.org/10.1007/s10068-014-0009-4
  22. Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI. Arachidonic acid production by Mortierella alpina with growthcoupled lipid synthesis. Process Biochem. 35: 1171-1175 (2000) https://doi.org/10.1016/S0032-9592(00)00151-5
  23. Chen CS, Wu SH, Girdaukas G, Sih CJ. Quantitative analyses of biochemical kinetic resolution of enantiomers. 2. Enzyme-catalyzed esterifications in water-organic solvent biphasic systems. J. Am. Chem. Soc. 109: 2812-2817 (1987) https://doi.org/10.1021/ja00243a040
  24. Snyder JM, Friedrich JP, Christianson DD. Effect of moisture and particle size on the extractability of oils from seeds with supercritical $CO_2$. J. Am. Oil Chem. Soc. 61: 1851-1856 (1984) https://doi.org/10.1007/BF02540816

Cited by

  1. Bleaching of Lipids Extracted from Single Cell Oil Produced by Mortierella sp. vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.405
  2. Single Cell Oil-Recent Trends in Microbial Production and Utilization vol.47, pp.6, 2015, https://doi.org/10.9721/KJFST.2015.47.6.687