DOI QR코드

DOI QR Code

Effects of Proteins on the Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent

다양한 페놀성 물질과 Folin-Ciocalteu 시약과의 반응성에 미치는 단백질의 영향

  • Park, Kyung A (Department of Food Science and Technology, College of Natural Science, Seoul Women's University) ;
  • Choi, Yoo-mi (Department of Food Science and Technology, College of Natural Science, Seoul Women's University) ;
  • Kang, Smee (Department of Food Science and Technology, College of Natural Science, Seoul Women's University) ;
  • Kim, Mi-Ri (Department of Food Science and Technology, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Department of Food Science and Technology, College of Natural Science, Seoul Women's University)
  • 박경아 (서울여자대학교 식품공학과) ;
  • 최유미 (서울여자대학교 식품공학과) ;
  • 강스미 (서울여자대학교 식품공학과) ;
  • 김미리 (서울여자대학교 식품공학과) ;
  • 홍정일 (서울여자대학교 식품공학과)
  • Received : 2015.01.28
  • Accepted : 2015.03.25
  • Published : 2015.06.30

Abstract

The Folin-Denis assay using the Folin-Ciocalteu (F-C) reagent has been commonly used for analyzing the total phenolic compound content in various food products. In the present study, the effects of proteins on the reactivity of the F-C reagent with different phenolic compounds were investigated. Bovine serum albumin (BSA) or skim milk proteins showed a concentration-dependent increase in color response in the Folin-Denis assay; these proteins decreased the color response of most phenolic compounds tested. The reactivity of phenolic compounds was significantly less pronounced in the presence of BSA and this interference was greater at higher concentrations of phenolic compounds. The reactivity of phenolic compounds with the F-C reagent was reduced significantly by their oxidation; the reaction of the oxidized products with the F-C reagent was more severely affected by BSA. The interfering effects in the Folin-Denis assay might be attributable to binding interactions of phenolic compounds with proteins.

본 연구는 기능성 소재 등의 페놀성 성분 함량 분석에 널리 이용되는 Folin-Denis 정량반응에서 단백질이 미치는 영향을 조사하였다. BSA와 SMP는 Folin-Denis 페놀정량반응에서 농도의존적인 발색반응을 나타내었고 BSA가 SMP보다 더 민감한 반응성을 나타내었다. 그러나 BSA는 각종 페놀성 물질과 같이 존재할 경우 페놀성 물질 자체에 의한 발색도 이하로 반응성을 감소시켰으며, 0.25보다 0.5 mg/mL의 BSA 농도에서 더 저하된 발색도를 유도하였다. BSA에 의한 서로 다른 페놀성 물질 간의 반응성 차이는 크게 나타나지 않았으나, SiA, Ctc, 및 EGCG 등에서 물질 당량 당 흡광도 증가의 기울기가 비교적 크게 감소하였다. 이들은 BSA가 없을 때에 비해 0.25와 0.5 mg/mL BSA 존재 시 각각 80%대 및 70%대의 기울기 감소율을 나타내었다. 한편, 페놀성 화합물들의 산화를 유도하여 F-C시약과 반응시킨 결과, TA, GA 및 EGCG에서 반응성의 감소가 크게 나타났으며, BSA 존재 시 이들 산화물의 상대적 발색도는 산화시간의 증가 및 BSA 농도 증가에 따라 감소하는 경향을 나타내었다. BSA의 형광강도가 TA, EGCG에 의해 유의적으로 감소하는 것으로 보아, BSA에 의한 페놀성 물질의 F-C시약과의 반응성 감소는 페놀성 물질과 BSA의 결합특성에 의한 것으로 사료된다. 이상의 결과는 단백질이 페놀성 물질과의 상호작용을 통해 이들의 정량에 간섭할 뿐만 아니라 페놀성 물질의 다양한 생리활성에도 영향을 미칠 수 있다는 것으로 시사하며, 보다 정확한 기작검토를 위하여 관련 연구가 지속적으로 수행 되어야 할 것으로 보인다.

Keywords

References

  1. Dai J, Mumper RJ. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352 (2010) https://doi.org/10.3390/molecules15107313
  2. Jacobo-Velazquez DA, Cisneros-Zevallos L. Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. J. Food. Sci. 74: R107-R113 (2009) https://doi.org/10.1111/j.1750-3841.2009.01352.x
  3. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. Dietary polyphenols and the prevention of diseases. Crc. Cr. Rev. Food Sci. 45: 287-306 (2005) https://doi.org/10.1080/1040869059096
  4. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  5. Stevenson DE, Hurst RD. Polyphenolic phytochemicals-just antioxidants or much more? Cell. Mol. Life Sci. 64: 2900-2916 (2007) https://doi.org/10.1007/s00018-007-7237-1
  6. Ministry of Food and Drug Safety. Standardized Guidelines of Functional Food Materials. Available from: http://www.mfds.go.kr/index.do?mid=1161&seq=4409&cmd=v. Accessed Jan. 15, 2015.
  7. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 53: 4290-4302 (2005) https://doi.org/10.1021/jf0502698
  8. Ministry of Food and Drug Safety. Korea Food Additives Code. Available from: http://fa.kfda.go.kr/standard/egongjeon_standard_view.jsp?SerialNo=104&GoCa=2. Accessed Jan. 23, 2015.
  9. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243 (1912)
  10. Bray HG, Thorpe WV. Analysis of phenolic compounds of interest in metabolism. Method. Biochem. Anal. 1: 27-52 (1954)
  11. Peterson GL. Review of the folin phenol protein quantitation method of lowry, rosebrough, farr, and randall. Anal. Biochem. 100: 201-220 (1979) https://doi.org/10.1016/0003-2697(79)90222-7
  12. Box JD. Investigation of the folin-ciocalteu phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 511-525 (1983) https://doi.org/10.1016/0043-1354(83)90111-2
  13. Ikawa M, Schaper TD, Dollard CA, Sasner JJ. Utilization of folin-ciocalteu phenol reagent for the detection of certain nitrogen compounds. J. Agr. Food Chem. 51: 1811-1815 (2003) https://doi.org/10.1021/jf021099r
  14. Kang S, Kim D, Lee BH, Kim MR, Chiang M, Hong J. Antioxidant properties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seed extracts on human intestinal cells. Food Sci. Biotechnol. 20: 115-122 (2011) https://doi.org/10.1007/s10068-011-0016-7
  15. Hong JI, Kim HJ, Kim JY. Factors affecting reactivity of various phenolic compounds with the folin-ciocalteu reagent. J. Korean Soc. Food Sci. Nutr. 40: 205-213 (2011) https://doi.org/10.3746/jkfn.2011.40.2.205
  16. Teale FWJ. The ultraviolet fluorescence of proteins in neutral solution. Biochem. J. 76: 381-388 (1960) https://doi.org/10.1042/bj0760381
  17. Rawel HM, Frey SK, Meidtner K, Kroll J, Schweigert FJ. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Mol. Nutr. Food Res. 50: 705-713 (2006) https://doi.org/10.1002/mnfr.200600013
  18. Papadopoulou A, Green RJ, Frazier RA. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J. Agr. Food Chem. 53: 158-163 (2005) https://doi.org/10.1021/jf048693g
  19. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using folin-ciocalteu reagent. Nat. Protoc. 2: 875-877 (2007) https://doi.org/10.1038/nprot.2007.102
  20. Haslam E. Polyphenol-protein interactions. Biochem. J. 139: 285-288 (1974) https://doi.org/10.1042/bj1390285
  21. Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476: 107-112 (2008) https://doi.org/10.1016/j.abb.2008.01.028

Cited by

  1. Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.) vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.574