DOI QR코드

DOI QR Code

Analytical Method to Quantify Sodium Metasilicate in Shark Fins

샥스핀 가공 중 사용된 메타규산나트륨 분석

  • Park, Se-Jong (Food Additives and Packaging Division, Food Safety Evaluation Department, Ministry of Food and Drug Safety) ;
  • Jang, Su-Jin (Food Additives and Packaging Division, Food Safety Evaluation Department, Ministry of Food and Drug Safety) ;
  • Choi, Jae-Chon (Food Additives and Packaging Division, Food Safety Evaluation Department, Ministry of Food and Drug Safety) ;
  • Kim, Meehye (Food Additives and Packaging Division, Food Safety Evaluation Department, Ministry of Food and Drug Safety)
  • 박세종 (식품의약품안전처 식품위해평가부 첨가물포장과) ;
  • 장수진 (식품의약품안전처 식품위해평가부 첨가물포장과) ;
  • 최재천 (식품의약품안전처 식품위해평가부 첨가물포장과) ;
  • 김미혜 (식품의약품안전처 식품위해평가부 첨가물포장과)
  • Received : 2014.09.17
  • Accepted : 2015.01.27
  • Published : 2015.04.30

Abstract

According to the Korea Food Additives Code, sodium metasilicate is permitted for use as a filtering agent for edible oils and fats. Sodium metasilicate is currently used as a food additives to increase the weight of shark fins. In this study, we developed an analytical method to quantify sodium metasilicate in food. Sodium metasilicate content was estimated by measuring the moisture content, pH and silicon content of shark fins. Silicon content was analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES) following microwave-assisted digestion with $HNO_3$ (65%) and $H_2O_2$ (30%). Shark fin total silicon content was $7.17{\pm}8.92mg/kg$, while the soluble silicon content was $2.34{\pm}3.80mg/kg$. After soaking raw shark fin in an aqueous solution of sodium metasilicate, fin weight, pH and silicon content were measured. These results would be used as the basic information for shark fins safety management.

메타규산나트륨은 우리나라 식품첨가물공전에 등록되어 있는 품목으로 식용유지류의 여과보조제의 목적 이외에는 사용할 수 없으며, 최종식품 완성 전에 제거하도록 규정되어 있다. 그러나 최근 샥스핀 등 수산물에 중량 증량의 목적으로 메타규산나트륨을 불법 사용하는 사례가 지속적으로 발생함에 따라 메타규산나트륨의 사용 여부를 판별할 수 있는 분석법의 필요성이 대두되고 있다. 그러나 메타규산나트륨의 수용액은 강알칼리성용액으로 식품에 첨가되면 해리되어 그 자체로 분석할 수 없으며, 규소 양의 측정을 통해 간접적인 방법으로 추정할 경우 시료 자체에 천연적으로 존재하는 규소와 구분해야 하는 어려움이 있다. 따라서 본 연구에서는 메타규산나트륨의 첨가 여부를 판별하기 위한 기초 자료 확보를 위해 메타규산나트륨 수용액에 가공되지 않은 상어지느러미를 침지하여 중량의 증가, pH 및 규소 함량 변화를 측정하였고, 이를 모니터링 결과와 비교하였다. 그러나 Robberecht 등(7)의 연구결과 6종의 어류에서 규소가 1.77-84.19 mg/kg의 범위에서 검출된 결과에서 알 수 있듯이, 수산물의 종류와 개체 간에 규소 함량의 편차가 크게 나타날 수 있기 때문에 향후 샥스핀의 규소 함량 모니터링을 지속적으로 수행하여 데이터베이스를 좀 더 보강할 필요가 있을 것으로 판단되며, 그 이후에 대조군과 pH, 수분 및 규소 함량 비교를 통해 메타규산나트륨 사용여부를 유추해 볼 수 있을 것으로 생각된다.

Keywords

References

  1. EPA. Methods for Chemical Analysis of Water and Wastes. Method 370.1. United States Environmental Protection Agency, Washington, DC, USA (1983)
  2. Coradin T, Eglin D, Livage J. The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy 18: 567-576 (2004) https://doi.org/10.1155/2004/356207
  3. Galhardo CX, Masini JC. Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry. Anal. Chim. Acta 417: 191-200 (2000) https://doi.org/10.1016/S0003-2670(00)00933-8
  4. Woods JT, Mellon MG. The molybdenum blue reaction: A spectrophotometric study. Ind. Eng. Chem. 13: 760-764 (1941)
  5. Bowen HJM, Peggs A. Determination of the silicon content of food. J. Sci. Food Agr. 35: 1225-1229 (1984) https://doi.org/10.1002/jsfa.2740351114
  6. Dejneka W, Lukasiak J. Determination of total and bioavailable silicon in selected foodstuffs. Food Control 14: 193-196 (2003) https://doi.org/10.1016/S0956-7135(02)00088-9
  7. Robberecht H, Van Cauwenbergh R, Van Vlaslaer V, Hermans N. Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. Sci. Total Environ. 407: 4777-4782 (2009) https://doi.org/10.1016/j.scitotenv.2009.05.019
  8. Powell JJ, McNaughton SA, Jugdaohsingh R, Anderson SHC, Dear J, Khot F, Mowatt L, Gleason KL, Sykes M, Thompson RPH, Bolton-Smith C, Hodson MJ. A provisional database for the silicon content of foods in the United Kingdom. Brit. J. Nutr. 94: 804-812 (2005) https://doi.org/10.1079/BJN20051542
  9. Mojsiewicz-Piekowska K, Lukasiak J. Analytical fractionation of silicon compounds in foodstuffs. Food Control 14: 153-162 (2003) https://doi.org/10.1016/S0956-7135(02)00059-2
  10. Jugdaohsingh R, Anderson SHC, Tucker KL, Elliott H, Kiel DP, Thompson RPH, Powell JJ. Dietary silicon intake and absorption. Am. J. Clin. Nutr. 75: 887-893 (2002)
  11. Casey TR, Bamforth CW. Silicon in beer and brewing. J. Sci. Food Agr. 90: 784-788 (2010)
  12. Korean of Society Food Science and Technology. Terminology dictionary of food science. Available from: http://terms.naver.com/entry.nhn?docId=294314&cid=42412&categoryId=42412 Accessed Apr. 20, 2015.
  13. Sripanyakorn S, Jugdaohsingh R, Elliott H, Walker C, Mehta P, Shoukru S, Thompson RPH, Powell JJ. The silicon content of beer and its bioavailability in healthy volunteers. Brit. J. Nutr. 91: 403-409 (2004) https://doi.org/10.1079/BJN20031082
  14. National Fisheries Research & Development Institute. Chemical composition of marine products in Korea. Available from: http://portal.nfrdi.re.kr/page?id=aq_seafood_2&type=tot. Accessed Apr. 20, 2015.