DOI QR코드

DOI QR Code

Effect of Oligonol, a Low Molecular Weight Polyphenol Derived from Lychee on Oxidative Stress-Related Hepatic Damage in Streptozotocin-Induced Diabetic Rats

리치 저분자 폴리페놀인 Oligonol의 Streptozotocin 투여 당뇨 쥐에서 산화적 스트레스와 관련된 간 손상에 미치는 영향

  • Noh, Jeong Sook (Department of Food Science & Nutrition, Tongmyong University)
  • 노정숙 (동명대학교 식품영양학과)
  • Received : 2014.11.28
  • Accepted : 2015.01.28
  • Published : 2015.04.30

Abstract

This study was conducted to examine whether or not oligonol, a low molecular weight polyphenol derived from lychee fruit, has an ameliorative effect on diabetes-induced oxidative stress-related hepatic damage in streptozotocin (STZ)-induced diabetic rats. Oligonol (10 or 20 mg/kg body weight; O10 or O20, respectively) was orally administered every day for 10 days to STZ-induced diabetic rats, and its effects were compared to vehicle-treated diabetic (Veh) and non-diabetic rats. Administration of 20 mg/kg of oligonol significantly decreased liver weight compared with the Veh group (P<0.05). Elevated levels of hepatic glucose, reactive oxygen species, peroxynitrite, and lipid peroxidation were detected in diabetic vehicle rats, whereas oligonol treatment significantly attenuated these levels (P<0.05). In diabetic vehicle rats, hepatic antioxidant enzyme protein levels decreased, whereas oligonol treatment showed significant elevated results. For inflammation-related protein expression, oligonol-treated groups showed insignificant reduction. Oligonol improved expression of proapoptotic protein caspase-3 in the liver of diabetic rats (P<0.05). In conclusion, these results provide important evidence that oligonol exhibits an inhibitory effect on oxidative stress and apoptosis-related protein expression as well as a hepato-protective effect against the development of diabetic complications in STZ-induced type 1 diabetic rats.

본 연구에서는 STZ 유발 당뇨 쥐에서 고혈당 및 산화적 스트레스 관련 간 손상 기전에 oligonol의 영향에 대해 살펴보고자 하였다. 10일 동안 oligonol을 투여한 결과 20 mg/kg oligonol 투여군에서 당뇨대조군에 비해 간 무게 및 간조직의 glucose, ROS, peroxynitrite, 지질과산화물 농도가 유의적으로 감소하였다. 간조직의 항산화 효소 단백질 발현을 측정한 결과 정상군에 비해 당뇨대조군에서 발현 정도가 낮아졌지만 oligonol 투여군에서는 유의적으로 증가하였다. 또한 caspase-3 효소의 단백질 발현은 당뇨대조군에서 증가하였으나 oligonol 투여군에서 그 발현이 억제되었다. 따라서 oligonol의 투여는 STZ-유발 당뇨 모델에서 ROS 및 지질과산화물 생성 억제와 항산화효소 작용의 증가 및 세포 사멸 작용이 있는 caspase-3 발현 억제를 통해 고혈당 및 산화적 스트레스에 의해 유발되는 간 손상에 대한 보호 효과가 있는 것으로 사료된다.

Keywords

References

  1. Ministry for Health, Welfare and Family Affairs. The Forth Korea National Health and Nutrition Examination Survey (KNHANES IV). http://www.mw.go.kr/front_new/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&CONT_SEQ=305115&page=1 (accessed Oct 2014).
  2. Ahn KJ. 2010. Westernization of Korean diabetes. Korean Clin Diabetes J 11: 91-94.
  3. Sakurai T, Tsuchiya S. 2006. Superoxide production from nonenzymatically glycated protein. FEBS Lett 236: 406-410.
  4. Lyons TJ. 1991. Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabet Med 8: 411-419. https://doi.org/10.1111/j.1464-5491.1991.tb01624.x
  5. Tai ES, Lim SC, Tan BY, Chew SK, Heng D, Tan CE. 2000. Screening for diabetes mellitus: a two-step approach in individuals with impaired fasting glucose improves detection of those at risk of complications. Diabet Med 17: 771-775. https://doi.org/10.1046/j.1464-5491.2000.00382.x
  6. Schattenberg JM, Schuchmann M. 2009. Diabetes and apoptosis: liver. Apoptosis 14: 1459-1471. https://doi.org/10.1007/s10495-009-0366-2
  7. Nakagami H, Morishita R, Yamamoto K, Yoshimura SI, Taniyama Y, Aoki M, Matsubara H, Kim S, Kaneda Y, Ogihara T. 2001. Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes 50: 1472-1481. https://doi.org/10.2337/diabetes.50.6.1472
  8. Winslow LC, Kroll DJ. 1998. Herbs as medicines. Arch Intern Med 158: 2192-2199. https://doi.org/10.1001/archinte.158.20.2192
  9. Jones PJ, Varady KA. 2008. Are functional foods redefining nutritional requirements? Appl Physiol Nutr Metab 33: 118-123. https://doi.org/10.1139/H07-134
  10. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. 1993. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 21: 289-299. https://doi.org/10.1016/0166-3542(93)90008-7
  11. Hsieh TC, Wu JM. 1999. Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 249: 109-115. https://doi.org/10.1006/excr.1999.4471
  12. Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T, Sa G. 2001. Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells. Biochem Biophys Res Commun 288: 658-665. https://doi.org/10.1006/bbrc.2001.5823
  13. Brat P, George S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, Arnault N, Amiot MJ. 2006. Daily polyphenol intake in France from fruit and vegetables. J Nutr 136: 2368-2373.
  14. Haslam E. 1998. Practical polyphenolics, from structure to molecular recognition and physiological action. 16th ed. Cambridge University Press, Cambridge, UK. p 192-194.
  15. Tanaka T, Yoshitake N, Zhao P, Matsuo Y, Kouno I, Nonaka G. 2007. Production of oligomeric proanthocyanidins by fragmentation of polymers. Jpn J Food Chem 14: 134-139.
  16. Jo EH, Lee SJ, Ahn NS, Park JS, Hwang JW, Kim SH, Aruoma OI, Lee YS, Kang KS. 2007. Induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cells by oligonol is mediated by Bcl-2 family regulation and MEK/ERK signaling. Eur J Cancer Prev 16: 342-347. https://doi.org/10.1097/01.cej.0000236247.86360.db
  17. Kundu JK, Chang EJ, Fujii H, Sun B, Surh YJ. 2008. Oligonol inhibits UVB-induced COX-2 expression in HR-1 hairless mouse skin-AP-1 and C/EBP as potential upstream targets. Photochem Photobiol 84: 399-406. https://doi.org/10.1111/j.1751-1097.2007.00277.x
  18. Zhang XH, Yokoo H, Nishioka H, Fujii H, Matsuda N, Hayashi T, Hattori Y. 2010. Beneficial effect of the oligomerized polyphenol oligonol on high glucose-induced changes in eNOS phosphorylation and dephosphorylation in endothelial cells. Br J Pharmacol 159: 928-938. https://doi.org/10.1111/j.1476-5381.2009.00594.x
  19. Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T, Kizaki T, Izawa T, Ishida H, Ohno H. 2009. Oligonol, a new lychee fruit-derived low-molecular form of polyphenol, enhances lipolysis in primary rat adipocytes through activation of the ERK1/2 pathway. Phytother Res 23: 1626-1633. https://doi.org/10.1002/ptr.2846
  20. Mittal A, Elmets CA, Katiyar SK. 2003. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24: 1379-1388. https://doi.org/10.1093/carcin/bgg095
  21. Noh JS, Kim HY, Park CH, Fujii H, Yokozawa T. 2010. Hypolipidaemic and antioxidative effects of oligonol, a lowmolecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. Br J Nutr 104: 1120-1128. https://doi.org/10.1017/S0007114510001819
  22. Noh JS, Park CH, Yokozawa T. 2011. Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism. Br J Nutr 106: 1013-1022. https://doi.org/10.1017/S0007114511001322
  23. Park CH, Yokozawa T, Noh JS. 2014. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates diabetes-induced renal damage through the advanced glycation end product-related pathway in db/db mice. J Nutr 144: 1150-1157. https://doi.org/10.3945/jn.114.193961
  24. Momose T, Yano Y, Ohashi K. 1963. Organic analysis. XL IV. A new deproteinizing agent for determination of blood sugar. Chem Pharm Bull (Tokyo) 11: 968-972. https://doi.org/10.1248/cpb.11.968
  25. Ali SF, LeBel CP, Bondy SC. 1992. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 12: 637-648.
  26. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. 1994. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16: 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  27. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  28. Lowry OH, Rosebrough NH, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
  29. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572. https://doi.org/10.2337/diacare.4.5.561
  30. Kotani K, Peroni OD, Minokoshi Y, Boss O, Kahn BB. 2004. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J Clin Invest 114: 1666-1675. https://doi.org/10.1172/JCI200421341
  31. Ceriello A. 2000. Oxidative stress and glycemic regulation. Metabolism 49: 27-29. https://doi.org/10.1016/S0026-0495(00)80082-7
  32. Sharpe PC, Liu WH, Yue KK, McMaster D, Catherwood MA, McGinty AM, Trimble ER. 1998. Glucose-induced oxidative stress in vascular contractile cells: comparison of aortic smooth muscle cells and retinal pericytes. Diabetes 147: 801-809.
  33. Ebadi M, Sharma SK. 2003. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson's disease. Antioxid Redox Signal 5: 319-335. https://doi.org/10.1089/152308603322110896
  34. Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H. 1996. DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24: 4105-4110. https://doi.org/10.1093/nar/24.21.4105
  35. Bordan C. 2001. Nitric oxide and the immune response. Nat Immunol 2: 907-916. https://doi.org/10.1038/ni1001-907
  36. Ruiz C, Alegría A, Barberá R, Farré R, Lagarda MJ. 1999. Lipid peroxidation and antioxidant enzyme activities in patients with type 1 diabetes mellitus. Scand J Clin Lab Invest 59: 99-105. https://doi.org/10.1080/00365519950185823
  37. Kesavulu MM, Giri R, Kameswara Rao B, Apparao C. 2000. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26: 387-392.
  38. Hayes JD, Ellis EM, Neal GE, Harrison DJ, Manson MM. 1999. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem Soc Symp 64: 141-168.
  39. Nohl H, Jordan W. 1980. The metabolic fate of mitochondrial hydrogen peroxide. Eur J Biochem 111: 203-210.
  40. Aliciguzel Y, Ozen I, Aslan M, Karayalcin U. 2003. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med 142: 172-177. https://doi.org/10.1016/S0022-2143(03)00110-0
  41. Henning SM, Fajardo-Lira C, Lee HW, Youssefian AA, Go VL, Heber D. 2003. Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutr Cancer 45: 226-235. https://doi.org/10.1207/S15327914NC4502_13
  42. Boden G. 2011. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 18: 139-143. https://doi.org/10.1097/MED.0b013e3283444b09
  43. Kumar MV, Shimokawa T, Nagy TR, Lane MD. 2002. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci USA 99: 1921-1925.
  44. Boghdady NA. 2013. Antioxidant and antiapoptotic effects of proanthocyanidin and ginkgo biloba extract against doxorubicin-induced cardiac injury in rats. Cell Biochem Funct 31: 344-351. https://doi.org/10.1002/cbf.2907
  45. Montane J, Cadavez L, Novials A. 2014. Stress and the inflammatory process: a major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes 7: 25-34.
  46. Akash MS, Rehman K, Chen S. 2013. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114: 525-531. https://doi.org/10.1002/jcb.24402
  47. Robertson JD, Orrenius S. 2000. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30: 609-627. https://doi.org/10.1080/10408440008951122
  48. Babu PV, Liu D, Gilbert ER. 2013. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24: 1777-1789. https://doi.org/10.1016/j.jnutbio.2013.06.003