DOI QR코드

DOI QR Code

Effect of Spinach Extract on RANKL-Mediated Osteoclast Differentiation

RANKL에 의해 유도되는 파골세포 분화에 대한 시금치 추출물의 영향

  • Received : 2014.12.17
  • Accepted : 2015.03.04
  • Published : 2015.04.30

Abstract

Inhibition of osteoclast differentiation is the most important target for prevention of inflammatory bone resorption and bone diseases. Here, we investigated the effect of spinach ethanol extract on osteoclast differentiation in RAW264.7 cells. Spinach was extracted with ethanol at a concentration ranging from 0 to 100% (0, 25, 50, 75, and 100% ethanol). Inhibitory effects of receptor activator of NF-${\kappa}B$ ligan (RANKL)-induced osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) stain assay. The most effective eanol concentration for osteoclast differentiation was 100%. Spinach extract (100% ethanol) suppressed RANKL-induced osteoclast differentiation and TRAP activity. Spinach extract (100% ethanol) also suppressed expression of osteoclast differentiation-related marker genes (NFATc1, c-FOS, cathepsin K, and TRAP) and down-regulated RANKL-induced NF-${\kappa}B$ and ERK phosphorylation during osteoclast differentiation. Taken together, our results suggest that spinach extract is effective against reducing osteoclast differentiation through the NF-${\kappa}B$-mediated pathway.

파골세포의 분화에 대한 시금치 추출물의 영향을 확인하고자 RANKL을 처리한 RAW264.7 세포에서 세포독성, TRAP(+) 다핵세포의 형성, 파골세포 분화 관련 유전자의 발현, 그리고 단백질 발현을 확인하였다. 물과 25, 50, 75 및 100% 에탄올 시금치 추출물의 세포독성을 측정한 결과 모든 추출물들이 $100{\mu}g/mL$ 이하의 농도에서 RAW264.7 세포에 독성을 유발하지 않았다. TRAP 염색을 통해 TRAP(+) 다핵세포의 수와 효소 활성을 측정한 결과 물 추출물을 제외한 모든 추출물이 대조군에 비해 분화 억제 및 효소 활성 저해 효과가 있었다. 특히 $100{\mu}g/mL$ 농도의 100% 에탄올 추출물은 RANKL만 처리한 대조군과 비교해 80%의 유의한 TRAP(+) 다핵세포 숫자 감소와 44%의 TRAP 효소 활성 저해율을 보였다. 시금치 에탄올 추출물은 RANKL에 의한 파골세포 분화의 지표가 되는 관련유전자인 NFAT, c-FOS, cathepsin K 및 TRAP의 발현을 억제하였다. 또한 단백질 수준에서 시금치 에탄올 추출물은 RANKL에 의해 증가된 NFATc1의 발현을 현저히 감소시키는 것으로 확인되었고, 또한 c-FOS의 활성화 형태인 인산화된 c-FOS의 발현뿐만 아니라 인산화되지 않은 비활성의 c-FOS 발현도 감소시켰다. 반면 파골세포의 분화에 직간접적인 영향을 미친다고 알려진 MAPK 중 ERK의 활성에는 거의 영향을 미치지 않는 것으로 보아 시금치 에탄올 추출물은 c-FOS의 활성, 비활성형 전체를 감소시킴으로 파골세포 분화를 감소시키는 것으로 확인되었다.

Keywords

References

  1. Titorencu I, Pruna V, Jinga VV, Simionescu M. 2014. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 355: 23-33. https://doi.org/10.1007/s00441-013-1750-3
  2. Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. Science 289: 1508-1514. https://doi.org/10.1126/science.289.5484.1508
  3. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. 2006. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24: 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  4. Wang C, Wang X, Xu XL, Yuan XL, Gou WL, Wang AY, Guo QY, Peng J, Lu SB. 2014. Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PLoS ONE 9: e96361. https://doi.org/10.1371/journal.pone.0096361
  5. Beederman M, Farina EM, Reid RR. 2014. Molecular basis of cranial suture biology and disease: Osteoblastic and osteoclastic perspectives. Genes Dis 1: 120-125. https://doi.org/10.1016/j.gendis.2014.07.004
  6. Tsubaki M, Komai M, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S. 2014. Nitrogen-containing bisphosphonates inhibit RANKL- and MCSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation. J Biomed Sci 21: 10. https://doi.org/10.1186/1423-0127-21-10
  7. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  8. Soysa NS, Alles N, Shimokawa H, Jimi E, Aoki K, Ohya K. 2009. Inhibition of the classical NF-kappaB pathway prevents osteoclast bone-resorbing activity. J Bone Miner Metab 27: 131-139. https://doi.org/10.1007/s00774-008-0026-6
  9. Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, Kato S, Matsumoto T, Fujita T. 1999. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 140: 1005-1008. https://doi.org/10.1210/endo.140.2.6673
  10. Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T, Ito A. 2003. An essential role of cytosolic phospholipase $A2{\alpha}$ in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med 197: 1303-1310. https://doi.org/10.1084/jem.20030015
  11. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. 2005. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115: 282-290. https://doi.org/10.1172/JCI200523394
  12. Feng X, McDonald JM. 2011. Disorders of bone remodeling. Annu Rev Pathol 6: 121-145. https://doi.org/10.1146/annurev-pathol-011110-130203
  13. Kim HJ, Yoon HJ, Kim SY, Yoon YR. 2014. A mediumchain fatty acid, capric acid, inhibits RANKL-induced osteoclast differentiation via the suppression of NF-${\kappa}B$ signaling and blocks cytoskeletal organization and survival in mature osteoclasts. Mol Cells 37: 598-604. https://doi.org/10.14348/molcells.2014.0153
  14. Li DZ, Zhang QX, Dong XX, Li HD, Ma X. 2014. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-${\kappa}B$ pathways in murine RAW264.7 cells. J Bone Miner Metab 32: 494-504. https://doi.org/10.1007/s00774-013-0530-1
  15. Wagner EF, Eferl R. 2005. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208: 126-140. https://doi.org/10.1111/j.0105-2896.2005.00332.x
  16. Teitelbaum SL, Ross FP. 2003. Genetic regulation of osteoclast development and function. Nat Rev Genet 4: 638-649. https://doi.org/10.1038/nrg1122
  17. Kim JH, Kim N. 2014. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21: 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  18. Kavitha CV, Deep G, Gangar SC, Jain AK, Agarwal C, Agarwal R. 2014. Silibinin inhibits prostate cancer cells- and RANKL-induced osteoclastogenesis by targeting NFATc1, NF-${\kappa}B$, and AP-1 activation in RAW264.7 cells. Mol Carcinog 53: 169-180. https://doi.org/10.1002/mc.21959
  19. Battaglino R, Kim D, Fu J, Vaage B, Fu XY, Stashenko P. 2002. c-myc is required for osteoclast differentiation. J Bone Miner Res 17: 763-773. https://doi.org/10.1359/jbmr.2002.17.5.763
  20. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendriticcell function. Nature 390: 175-179. https://doi.org/10.1038/36593
  21. Lee MH, Han JS, Kozukue N, Minamide T. 2005. Physicochemical characteristics of commercial spinach produced in autumn. J East Asian Soc Dietary Life 15: 306-314.
  22. Kim NY, Yoon SK, Jang MS. 1993. Effect of blanching on the chemical properties of different kind of spinach. Korean J Soc Food Sci 9: 204-209.
  23. Lomnitski L, Bergman M, Nyska A, Ben-Shaul V, Grossman S. 2003. Composition, efficacy, and safety of spinach extracts. Nutr Cancer 46: 222-231. https://doi.org/10.1207/S15327914NC4602_16
  24. Bohlooli S, Barmaki S, Khoshkhahesh F, Nakhostin-Roohi B. 2014. The effect of spinach supplementation on exerciseinduced oxidative stress. J Sports Med Phys Fitness [Epub ahead of print].
  25. Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. 2014. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev Nutr Food Sci 19: 19-26. https://doi.org/10.3746/pnf.2014.19.1.019
  26. Seo JH, Kang HW, Han JS. 2012. Quality characteristics of Jajang noodles with added spinach. J East Asian Soc Dietary Life 22: 278-289.
  27. Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK. 2012. Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 418: 247-253. https://doi.org/10.1016/j.bbrc.2012.01.005
  28. Lee JH, Kim HN, Yang D, Jung K, Kim HM, Kim HH, Ha H, Lee ZH. 2009. Trolox prevents osteoclastogenesis by suppressing RANKL expression and signaling. J Biol Chem 284: 13725-13734. https://doi.org/10.1074/jbc.M806941200
  29. Sriarj W, Aoki K, Ohya K, Takahashi M, Takagi Y, Shimokawa H. 2015. TGF-${\beta}$ in dentin matrix extract induces osteoclastogenesis in vitro. Odontology 103: 9-18. https://doi.org/10.1007/s10266-013-0140-3
  30. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN. 2005. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85: 154-159. https://doi.org/10.1038/labinvest.3700208
  31. Liu YQ, Zhan LB, Liu T, Cheng MC, Liu XY, Xiao HB. 2014. Inhibitory effect of Ecliptae herba extract and its component wedelolactone on pre-osteoclastic proliferation and differentiation. J Ethnopharmacol 157: 206-211. https://doi.org/10.1016/j.jep.2014.09.033
  32. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. 2002. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30: 71-77.
  33. Chung YH, Choi B, Song DH, Song Y, Kang SW, Yoon SY, Kim SW, Lee HK, Chang EJ. 2014. Interleukin-$1{\beta}$ promotes the LC3-mediated secretory function of osteoclast precursors by stimulating the $Ca^{2+}$-dependent activation of ERK. Int J Biochem Cell Biol 54: 198-207. https://doi.org/10.1016/j.biocel.2014.07.018

Cited by

  1. RANKL 유도된 파골세포 분화에 대한 풀무치 에탄올 추출물의 분화 억제 효과 vol.29, pp.10, 2019, https://doi.org/10.5352/jls.2019.29.10.1104
  2. 갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향 vol.30, pp.11, 2020, https://doi.org/10.5352/jls.2020.30.11.983