DOI QR코드

DOI QR Code

Antioxidant and α-glucosidase inhibition activity of seaweed extracts

해조류 추출물의 항산화 및 α-glucosidase 저해 활성

  • Kim, Jin-Hak (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Kang, Hye-Min (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Shin-Ho (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Ju-Young (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Park, La-Young (Department of Food Science and Technology, Catholic University of Daegu)
  • 김진학 (대구가톨릭대학교 식품공학전공) ;
  • 강혜민 (대구가톨릭대학교 식품공학전공) ;
  • 이신호 (대구가톨릭대학교 식품공학전공) ;
  • 이주영 (대구가톨릭대학교 식품공학전공) ;
  • 박나영 (대구가톨릭대학교 식품공학전공)
  • Received : 2014.12.26
  • Accepted : 2015.04.13
  • Published : 2015.04.30

Abstract

The antioxidant and ${\alpha}$-glucosidase inhibition activities of 10 kinds of seaweeds Ecklonia cava (EC), Ecklonia stolonifera (ES), Eisenia bicyclis (EB), Capsosiphon fulvescens (CF), Sargassum fulvellum (SF), Undaria pinnatifida (UP), Sargassum thunbergii (ST), Codium fragile (CFr), Hizikia fusiformis (HF), and Enteromorpha prolifera (EP) were investigated. Among all the tested seaweed extracts, the total polyphenol and flavonoid contents of the EB extract were highest 150.81 mg/g and 77.02 mg/g, respectively. The DPPH and ABTS radical scavenging abilities of the EB ethanol extract (1 mg/mL) were 86.26% and 99.71%, respectively, and its SOD-like activity and reducing power were 21.34% and 1.710 ($OD_{700}$). The ${\alpha}$-glucosidase inhibition activities of the EC, EB, and ST were above 98% at the 0.1 mg/mL concentration. These results suggest that seaweed extracts effectively prevent the what of antioxidants and decrease the blood glucose level, and may be used to develop various functional products.

해양생물 유래 기능성 소재 개발 연구의 일환으로, 국내 자생하는 감태 외 9종(곰피, 대황, 매생이, 모자반, 미역, 지충이, 청각, 톳, 파래)의 해조류을 이용하여 열수 및 에탄올 추출물을 제조하여 추출물의 항산화 활성 및 ${\alpha}$-glucosidase 저해활성을 조사하였다. 총 페놀 및 플라보노이드 함량은 대황 에탄올 추출물에서 각각 150.81, 77.02 mg/g으로 가장 많았다. DPPH radical 소거능은 대황, 감태, 지충이 에탄올 추출물이 각각 86.26, 78.72, 68.32%를 나타내었으며, ABTS radical 소거능은 대황, 감태, 지충이 열수 및 에탄올 추출물에서 모두 99% 이상의 높은 활성을 나타내었다. SOD 유사활성과 환원력은 대황 에탄올 추출물이 21.34%, 1.710($OD_{700}$)으로 가장 높았으며, 지방산패억제능도 대황 에탄올 추출물에서 83.95%로 가장 높았다. 또한, 해조류 추출물의 ${\alpha}$-glucosidase 저해 활성은 대황, 감태, 지충이 열수 추출물에서 97.75, 95.17, 87.13%를 나타내었으며, 에탄올 추출물에서는 3종류 모두 약 98%의 높은 저해활성을 나타내었다. 해조류 중 대황, 감태, 지충이의 항산화 활성 및 ${\alpha}$-glucosidase 저해활성이 우수하여 천연 기능성 소재 개발을 위한 좋은 원료가 될 수 있을 것으로 사료되며, 기능성소재로 사용하기 위하여 적용할 제품에 따라 추출물의 재료, 첨가농도, 제품의 생리활성 등과 관련된 광범위한 연구가 요구된다.

Keywords

References

  1. Cowburn R, Hardy J, Roberts P, Briggs R (1988) Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer's disease. Brain Res, 452, 403-407 https://doi.org/10.1016/0006-8993(88)90048-0
  2. Reiter RJ (1995) Oxidative process and antioxidative defense mechanism in the aging brain. FASEB J, 9, 526-533
  3. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol, 1, 181-193 https://doi.org/10.1385/CT:1:3:181
  4. Drews G, Krippeit-Drews P, Dufer M (2010) Oxidative stress and beta-cell dysfunction. Pflugers Arch, 460, 703-718 https://doi.org/10.1007/s00424-010-0862-9
  5. Ahn BS, Kim JW, Kim HT, Lee SD, Lee KW (2010) Antioxidant effects of Hovenia dulcis in the streptozotocininduced diabetic rats. J Veterinary Clinics, 27, 366-373
  6. Branen AL (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc, 52, 59-63 https://doi.org/10.1007/BF02901825
  7. Mooradian AD, Thurman JE (1999) Drug therapy of postprandial hyperglycaemia. Drugs, 57, 19-29
  8. Joo DS, Lee JK, Choi YS, Cho SY, Je YK, Choi JW (2003) Effect of sea tangle oligosaccharide drink on serum and hepatic lipids in rats fed a hyperlipidemic diet. J Korean Soc Food Sci Nutr, 32, 1364-1369 https://doi.org/10.3746/jkfn.2003.32.8.1364
  9. Choi IW, Kim SU, Seo DC, Kang BH, Sohn BK, Rim YS, Heo JS, Cho JS (2005) Biosorption of heavy metals biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii, and Undaria pinnatifida. Korean J Environ Agri, 24, 370-378 https://doi.org/10.5338/KJEA.2005.24.4.370
  10. Oh JK, Shin YO, Sohn HS, Seo RM (2003) Effect of functional food including seaweeds extracts supplementation on hematological variables and antioxidant system. Korean J Physical Education, 42, 895-903
  11. Kong CS, Um YR, Lee JI, Kim YA, Lee JS, Seo YW (2008) Inhibition effects of extracts and its solvent fractions isolated from Limonium tetragonum on growth of human cancer cells. Korean J Biotechnol Bioeng, 23, 177-182
  12. Lim JH, Jung KS, Lee JS, Jung ES, Kim DK, Kim YS, Kim YW, Park DH (2008) The study on antimicrobial and antifungal activity of the wild seaweeds of Jeju island. J Soc Cosmet Sci Korean, 34, 201-207
  13. Cha MH, Kim YK (2008) Analysis of consumption values of a seaweed functional food. Korean J Food Culture, 23, 462-468
  14. Lee EH, Ham J, Ahn HR, Kim MC, Kim CY, Pan CH, Um BH, Jung SH (2009) Inhibitory effects of the compounds isolated from Sargassum yezoense on ${\alpha}$-glucosidase and oxidative stress. Korean J Pharmacogn, 40, 150-154
  15. Folin O, Denis W (1912) On phosphotungsticphosphomolybdic compounds as color reagents. J Biol Chem, 12, 239-249
  16. Abdel-Hameed ESS (2008) Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem, 114, 1271-1277
  17. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radial cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Oyaizu M (1986) Studies on products of browning reaction prepared from glucose amine. Jpn J Nutr, 44, 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  21. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol, 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  22. Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent ${\alpha}$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochem, 69, 2820-2825 https://doi.org/10.1016/j.phytochem.2008.09.007
  23. Ahn SM, Hong YK, Kwon GS, Sohn HY (2010) Evaluation of in-vitro anticoagulation activity of 35 different seaweed extracts. J Life Sci, 20, 1640-1647 https://doi.org/10.5352/JLS.2010.20.11.1640
  24. Middleton E, Kandaswami C (1994) Potential healthpromoting properties of citrus flavonoids. Food Technol, 48, 115-119
  25. Seo YH, Kim IJ, Yie AS, Min HK (1999) Electron donating ability and contents of phenolic compounds, tocopherols and carotenoids in waxy corn (Zea mays L.). Korean J Food Sci Technol, 31, 581-585
  26. Nakamura K, Ogasawara Y, Endou K, Fujimori S, Koyama M, Akano H (2010) Phenolic compounds responsible for the superoxide dismutase-like activity in high-brix apple vinegar. J Agric Food Chem, 58, 10124-10132 https://doi.org/10.1021/jf100054n
  27. Choudhary RK, Swarnkar PL (2011) Antioxidant activity of phenolic and flavonoid compounds in some medical plants of India. Nat Prod Res, 25, 1101-1109 https://doi.org/10.1080/14786419.2010.498372
  28. Osawa T (1994) Novel natural antioxidant for utilization in food and biological system. In : Postharvest Biochemistry of Plant Food Material in the Tropics, Uritani I, Garcia VV, Mendoza EM(editor), Japan Scientific Societies Press, Tokyo, Japan, p 241-251
  29. Cojocaru IM, Cojocaru M, Musuroi C, Botezat M, Lazar L, Druta A (2004) Lipid peroxidation and catalase in diabetes mellitus with and without ischemic stroke. Rom J Intern Med, 42, 423-429
  30. Lee BB, Park SR, Han CS, Han DY, Park EJ, Park HR, Lee SC (2008) Antioxidant activity and inhibition activity against ${\alpha}$-amylase and ${\alpha}$-glucosidase of Viola mandshurica extracts. J Korean Soc Food Sci Nutr, 37, 405-409 https://doi.org/10.3746/jkfn.2008.37.4.405
  31. Kim HY, Lim SH, Park YH, Ham HJ, Lee KJ, Park DS, Kim KH, Kim S (2011) Screening of ${\alpha}$-amylase, ${\alpha}$-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. J Korean Soc Food Sci Nutr, 40, 308-315 https://doi.org/10.3746/jkfn.2011.40.2.308
  32. Xu ML, Wang L, Hu JH, Wang MH (2009) Antioxidant and ${\alpha}$-glucosidase inhibitory activities of some wild vegetable extracts. J Agric Food Chem, 47, 4121-4125

Cited by

  1. Anti-Melanogenic Effects of Flavonoid Glycosides from Limonium tetragonum (Thunb.) Bullock via Inhibition of Tyrosinase and Tyrosinase-Related Proteins vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091480
  2. MMP-Inhibitory Effects of Flavonoid Glycosides from Edible Medicinal Halophyte Limonium tetragonum vol.2017, 2017, https://doi.org/10.1155/2017/6750274
  3. In Vitro Screening for Anti-Dementia Activities of Seaweed Extracts vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.966
  4. 잔가시 모자반 추출물의 주름 개선 및 미백 효과 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1510.10002
  5. 마삭줄(Trachelospermum asiaticum var. intermedium nakai)로부터 추출한 pheonolic compounds의 생리활성 vol.24, pp.2, 2015, https://doi.org/10.11002/kjfp.2017.24.2.282
  6. 자연 발효 감태 추출물로 염색한 면직물의 염색 특성과 바이오 기능성 vol.42, pp.3, 2018, https://doi.org/10.5850/jksct.2018.42.3.516
  7. 화장품 소재연구를 위한 해조류의 발효 공정 확립 vol.20, pp.9, 2019, https://doi.org/10.5762/kais.2019.20.9.14
  8. 사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과 vol.7, pp.4, 2015, https://doi.org/10.15268/ksim.2019.7.4.061
  9. 추출용매에 따른 톳(Hizikia fusiformis) 추출물의 항산화 및 생리활성 비교 vol.53, pp.6, 2015, https://doi.org/10.5657/kfas.2020.0886
  10. Potential Antidiabetic Effects of Seaweed Extracts by Upregulating Glucose Utilization and Alleviating Inflammation in C2C12 Myotubes vol.18, pp.3, 2021, https://doi.org/10.3390/ijerph18031367
  11. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.288
  12. 미세먼지(PM2.5)로 유도된 세포(비강, 폐, 뇌)독성에 대한 청각(Codium fragile)의 보호효과 vol.53, pp.2, 2015, https://doi.org/10.9721/kjfst.2021.53.2.223
  13. Physicochemical characteristics and antioxidant activities of laver cultivars harvested at different times vol.28, pp.6, 2021, https://doi.org/10.11002/kjfp.2021.28.6.705