DOI QR코드

DOI QR Code

Estimation of Interception in Cheonmi Watershed, Jeju Island

제주 천미천 유역의 차단량 추정

  • Chung, Il-Moon (Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jeongwoo (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Nam Won (Korea Institute of Civil Engineering and Building Technology)
  • 정일문 (한국건설기술연구원 수자원.하천연구소) ;
  • 이정우 (한국건설기술연구원 수자원.하천연구소) ;
  • 김남원 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2015.01.23
  • Accepted : 2015.04.06
  • Published : 2015.08.01

Abstract

For the establishment of effective water resources management platform for Jeju-Island, the characteristics, including surface runoff, evapotranspiration, groundwater recharge and discharge are to be properly quantified. Among these hydrologic components, interception due to vegetation is very important factor but it is hard to be quantified. After Von Hoyningen-Huene (1981) found the relationship between LAI (Leaf Area Index) and interception storage, LAI has been used for key factor to estimate interception and transpiration. In this study the equation suggested by Kozak et al. (2007) is implemented in SWAT-K (Soil and Water Assessment Tool - Korea) model and is tested at the Cheonmicheon watershed in Jeju-Island. The evaporation due to interception was estimated as 85~104mm, 8~11% of whole evaporation. Therefore it is necessary to consider the evaporation due to interception as a controlling factor to water budget of this watershed.

제주도의 효율적 수자원 관리 기반을 구축하기 위해서는 지표수의 유출 특성과 증발산량, 지하수 함양량, 지하수 유출량의 상호관계를 정확하게 제시할 필요가 있다. 이 중 식생에 의한 차단(interception)효과는 증발산량에 직결되는 영향 인자임에도 정량적 분석의 어려움 때문에 유역단위로 정량화된 사례는 드물다. Von Hoyningen-Huene (1981)이 엽면적지수와 차단저류량의 관계를 밝혔고, LAI는 차단, 증산의 핵심요소로 다양한 수문모형에 활용되고 있다. 본 연구에서는 Kozak et al. (2007)이 제시한 엽면적 지수(LAI: Leaf Area Index)에 따른 차단저류량의 관계식을 이용하여 한국형 유역수문모형 SWAT-K (Soil and Water Assessment Tool-Korea)내에 식생에 의한 차단량 산정모듈을 개선하였다. 제주도 천미천 유역을 대상으로 적용한 결과 천미천 유역의 차단증발량은 85~104mm로서 전체 증발산량(993~1062mm)의 약 8~11% 만큼 차지하는 것으로 분석되어 전체 물수지 성분에 영향인자로 고려되어야 할 것이다.

Keywords

References

  1. Arnold, J. G. and Williams, J. R. (1987). "SWRRB-A watershed scale model for soil and water resources management." Computer Models of Watershed Hydrology, V.J. Singh ed., Water Resources Publications, pp. 847-908.
  2. Arnold, J. G., Williams, J. R. and Maidment, D. R. (1995). "Continuous time water and sediment routing model for large basins." Journal of Hydraulic Engineering, Vol. 121, No. 2, pp. 171-183. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(171)
  3. Arnold, J. G., Allen, P. M. and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  4. Chung, I. M., Lee, J., Kim, J. T., Na, H. and Kim, N. W. (2011). "Development of threshold runoff simulation method for runoff analysis of Jeju Island." J. Environ. Sci., Vol. 20, No. 10, pp. 1347-1355.
  5. DHI (1998). MIKE SHE water movement - user guide and technical reference manual, edition 1.1, Danish Hydraulic Institute, Denmark.
  6. Gassman, P. W., Reyes, M. R., Green, J. G. and Arnold, J. G. (2007). "The soil and water assessment tool: Historical Development, Applications, and Future Research Directions." Transactions of the ASABE, Vol. 50, No. 4, pp. 1211-1250. https://doi.org/10.13031/2013.23637
  7. Gomez, J. A., Giraldez, J. V. and Fereres, E. (2001). "Rainfall interception by olive trees in relation to leaf area." Agricultural Watershed Management, Vol. 49, pp. 65-76. https://doi.org/10.1016/S0378-3774(00)00116-5
  8. Jeju Do and Korea Water Resources Corporation (2003). Hydrogeologic Groundwater resources investigation in Jeju Island (in Korean).
  9. Kim, N. W., Chung, I. M., Kim, C., Lee, J. and Lee, J. E. (2009). "Development and applications of SWAT-K (Korea)." Soil and Water Assessment Tool (SWAT) Global Applications, J. Arnold et. al, eds., Special Publication No. 4, World Association of Soil and Water Conservation, Bangkok, Thailand.
  10. Kim, N. W., Chung, I. M. and Na, H. (2013). "A method of simulating ephemeral stream runoff characteristics in cheonmi-cheon watershed." Jeju Island, J. Environ. Sci., Vol. 22, No. 5, pp. 523-531 (in Korean).
  11. Kim, N. W., Won, Y. S., Lee, J., Lee, J. E. and Jeong, J. (2011). "Hydrological impacts of urban imperviousness in white rock creek watershed." Transactions of the ASABE, Vol. 54, No. 5, pp. 1759-1771. https://doi.org/10.13031/2013.39848
  12. Knisel, W. G. (1980). CREAMS: A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, USDA Conservation Research Report No. 26.
  13. Kozak, J. A., Ahuja, L. R., Green, T. R. and Ma, L. (2007). "Modeling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture." Hydrological Processes, Vol. 21, No. 2, pp. 229-241. https://doi.org/10.1002/hyp.6235
  14. Leavesley, G. H., Lichty, R. W., Troutman, B. M. and Saindon, L. G. (1983). Precipitation-runoff modeling system - User's manual, U.S. Geological Survey Water-Resources Investigations Report 83-4238.
  15. Leonard, R. A., Knisel, W. G. and Still, D. A. (1987). "GLEAMS: Groundwater Loading Effects on Agricultural Management Systems." Trans. ASAE, Vol. 30, No. 5, pp. 1403-1428. https://doi.org/10.13031/2013.30578
  16. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Willams, J. R. (2005). Soil and water assessment tool: The Theoretical Documentation (version 2005), U.S. Agicultural Reasearch Service.
  17. Savenije, H. H. G. (2004). "The importance of interception and why we should delete the term evapotranspiration from our vocabulary." Hydrological Processes, Vol. 18, No. 8, pp. 1507-1511. https://doi.org/10.1002/hyp.5563
  18. Von Hoyningen-Huene, J. (1981). The interception of precipitation in agricultural, Work report German Association for Water, Wastewater and Agriculture, DVWK, Braunschwig, Germany.
  19. Yoon, T. (2011). Applied hydrology practice and application, Cheongmoongak (in Korean).

Cited by

  1. Evaluation and complementation of observed flow in the Hancheon watershed in Jeju Island using a physically-based watershed model vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.951