DOI QR코드

DOI QR Code

Signal Timing Calculation Model of Transit Signal Priority using Shockwave Theory

충격파 이론을 이용한 대중교통 우선신호의 신호시간 산정모형

  • 박상섭 (서울시립대학교 교통공학과) ;
  • 조혜림 (서울특별시 교통정책과) ;
  • 김영찬 (서울시립대학교 교통공학과) ;
  • 정영제 (도로교통공단 교통과학연구원)
  • Received : 2015.01.21
  • Accepted : 2015.06.15
  • Published : 2015.08.01

Abstract

This research suggested the traffic signal calculation model of active transit signal priority using a shockwave model. Using this signal priority timing optimization model, the shockwave area is computed under the condition of Early Green and Green Extension among active transit signal priority techniques. This study suggested the speed estimation method of backward shockwave using average travel time and intersection passing time. A shockwave area change is calculated according to signal timing change of transit signal priority. Moreover, this signal timing calculation model could determine the optimal signal priority timings to minimize intersection delay of general vehicles. A micro simulation analysis using VISSIM and its user application model ComInterface was applied. This study checked that this model could calculate the signal timings to minimize intersection delay considering saturation condition of traffic flow. In case studies using an isolated intersection, this study checked that this model could improve general vehicle delay of more over ten percentage as compared with equality reduction strategy of non-priority phases. Recently, transit priority facilities are spreading such as tram, BRT and median bus lane in Korea. This research has an important significance in that the proposed priority model is a new methodology that improve operation efficiency of signal intersection.

본 연구에서는 충격파 모형을 이용하여 능동식 우선신호의 최적 신호시간을 산정하기 위한 모형을 제시하였다. 본 신호 최적화 모형을 이용하여 능동형 우선신호 기법 중 Early green 및 Green extension이 적용되는 조건에서 충격파 면적을 산정할 수 있다. 본 연구에서는 평균통행시간 및 교차로 진출시각을 이용해 충격파의 발생 속도를 산정하기 위한 방법을 제시하였으며, 이를 이용해 우선신호로 인한 현시 변화량에 따라 충격파 면적 변화량을 산정할 수 있다. 또한 교차로 전체의 충격파 면적이 최소화되는 신호시간을 산정하여 우선신호로 인해 증가하는 일반차량의 지체를 최소화할 수 있도록 하였다. 우선신호 신호시간 산정 모형의 효과평가를 위해 VISSIM과 ComInterface를 이용한 미시적 시뮬레이션 분석을 시행하였으며, 이동류의 포화상태를 고려하여 지체 최소화를 위한 신호시간이 산정됨을 확인하였다. 독립교차로를 대상으로 하는 사례분석에서 우선신호를 위해 비우선현시를 균일하게 단축하는 전략 대비 본 모형에서 일반차량 지체가 10% 이상 개선됨을 확인하였다. 본 연구는 트램, BRT, 중앙버스 전용차로 등 대중교통 우선시설이 확산되고 있는 최근 국내 상황에서 신호교차로의 운영효율을 높이기 위한 새로운 우선신호 제어 방법을 제시하였다는데 의의가 있겠다.

Keywords

References

  1. Chada, S. and Newland, R. (2002). Effectiveness of Bus Signal Priority, NCTR-416-04, University of South Florida, Florida.
  2. Currie, G. and Shalaby, A. (2008). "Active transit signal priority for street cars - Experience in Melbourne, Australia and Toronto, Canada." Transportation Research Record, Transportation Research Board, Vol. 2042, pp. 41-49. https://doi.org/10.3141/2042-05
  3. Dion, F. and Ghanim, M. (2007). "Impact of dwell time variability on transit signal priority performance at intersections with nearside bus stop." Proc. of 86th TRB Annual Meeting, Transport Research Board, Washington, D.C.
  4. Evans, H. and Skiles, G. (1970). "Improving public transit through bus preemption of traffic signals." Traffic Quarterly, Vol. 24, No. 4, pp. 531-543.
  5. Gardner, K., D'Souza, C., Hounsell, N., Shrestha, B. and Bretherton, D. (2009). Review of Bus Priority at Traffic Signals around the World, University of Southampton, UK.
  6. Garrow, M. and Machemehl, R. (1998). "Development and evaluation of transit signal priority strategies." Proc. of 77th TRB Annual Meeting, Transport Research Board, Washington, D.C.
  7. Hong, K. S., Jeong J. H., An K. H. and Lee Y. I. (2011). "A study on the active transit signal priority control algorithm based on bus demand using UTIS." J. Korean Soc. Transp., Korean Society of Transportation, Vol. 29, No. 6, pp. 107-116.
  8. Jeong, Y. J. (2011). Traffic Signal Control Strategy for Tram Priority in Arterial, Ph.D. Dissertation, University of Seoul, Seoul, Korea.
  9. Jeong, Y. J., Jeong, J. H., Joo, D. H., Lee, H. W. and Heo, N. W. (2014). "Signal timing and intersection waiting time calculation model using analytical method for active tram signal priority." J. Korean Soc. Transp., Korean Society of Transportation, Vol. 32, No. 4, pp. 410-420. https://doi.org/10.7470/jkst.2014.32.4.410
  10. Khasnabis, S., Reddy, G. V. and Hoda, S. K. (1993). "Evaluation of the operating cost consequences of signal preemption as an IVHS strategy." Transportation Research Record, Transportation Research Board, Vol. 1390, pp. 3-9.
  11. Kim, Y. C. (2007). Development of wireless interface signal control systems for dynamic and optimum management (WISDOM): Real-time Signal Control Algorithm based on Sectional Travel Time, University of Seoul, Seoul, Korea (in Korea).
  12. Levinson, H. et al. (2003). Bus rapid transit volume 1: Case Studies in Bus Rapid Transit, Transit Cooperative Research Program Report 90, Transportation Research Board, Washington, D.C.
  13. Li, Y. et al. (2008). Transit signal priority research tools, California Partners for Advanced Transit and Highways, California.
  14. Rephlo, J. and Haas, R. (2006). Sacramento-watt avenue transit priority and mobility enhancement demonstration project, Phase III Evaluation Report, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C., pp. 5-6.
  15. Skabardonis, A. (2000). "Control strategies for transit priority." Transportation Research Record, Transportation Research Board, Vol. 1727, pp. 20-26. https://doi.org/10.3141/1727-03
  16. Smith, H. R., Hemily, B. and Ivanovic, M. (2005), Transit signal priority(TSP): A Planning and Implementation Handbook, ITS America, Washington, D.C.
  17. Wattleworth, J. A., Courage, K. G. and Wallace, C. E. (1977). "Evaluation of some bus priority strategies on NW 7th Avenue in Miami." Transportation Research Record, Transportation Research Board, Vol. 626, pp.32-35.
  18. Wilbur, E. J. (1976). The green back experiment - signal preemption for express buses : A Demonstration Project, Report DMT-014, California Department of Transportation, California.