DOI QR코드

DOI QR Code

Preparation and Characteristic of Carbon/Carbon Composites with Coal-tar and Petroleum Binder Pitches

석탄계 및 석유계 피치가 함침된 탄소/탄소 복합재료 제조 및 특성

  • Received : 2015.05.07
  • Accepted : 2015.06.18
  • Published : 2015.08.10

Abstract

Unidirectional carbon/carbon (C/C) composites were manufactured using phenolic resins as a precursor of the carbonized matrix throughout a one-step manufacturing process. Also, molybdenum oxide ($MoO_3$) and binder pitches were impregnated with phenolic resins to improve the bulk density and mechanical property of the C/C composites. In this study, the influence of $MoO_3$ and binder pitches on mechanical properties of the C/C composites were investigated by measuring flexural strength (${\sigma}_f$) and interlaminar shear strength (ILSS). The results show that the enhancement of interfacial adhesions between the fibers and matrix resins of the C/C composites with $MoO_3$ and binder pitches which led to the improvement of mechanical properties of the C/C composites. This indicates that the presence of $MoO_3$ and binder pitches in C/C composites can develop the graphite structure and increase the bulk density.

일방향의 탄소/탄소 복합재료는 탄화 매트릭스의 전구체인 페놀수지를 사용하여 단일 공정을 통하여 제조하였으며, 탄소/탄소 복합재료의 밀도와 기계적 물성을 향상시키기 위하여 페놀수지에 산화몰리브덴($MoO_3$)과 바인더 피치를 첨가하였다. 본 연구에서는 $MoO_3$와 바인더 피치 첨가로 인한 탄소/탄소 복합재료의 기계적 물성에 미치는 영향에 대해 굴곡강도와 층간전단강도 측정을 통하여 고찰하였다. 결과적으로 $MoO_3$와 바인더 피치가 첨가된 탄소/탄소 복합재료들은 탄소섬유와 매트릭스간의 계면결합력 증가로 인하여 기계적 물성이 향상됨을 관찰할 수 있었다. 이는 $MoO_3$와 바인더 피치를 첨가함으로써 탄소/탄소 복합재료의 흑연구조가 발달함과 동시에 밀도를 향상시킬 수 있음을 나타낸다.

Keywords

References

  1. S. J. Park and M. K. Seo, The Effects of $MoSi_2$ on the Oxidation Behavior of Carbon/Carbon Composites, Carbon, 39, 1299-1235 (2001). https://doi.org/10.1016/S0008-6223(00)00237-2
  2. H. H. Kuo, J. H. Chern Lin, and C. P. Ju, Effect of Carbonization Rate on the Properties of a PAN/Phenolic-based Carbon/Carbon Composite, Carbon, 43, 229-239 (2005). https://doi.org/10.1016/j.carbon.2004.08.024
  3. B. Terwisch and E. Fitzer, Carbon-carbon Composites Unidirectionally Reinforced with Carbon and Graphite Fibers, Carbon, 10. 383-386 (1972). https://doi.org/10.1016/0008-6223(72)90053-X
  4. E. Fitzer, M. Heym, and K. Karlisch, Proc. 4th London Int. Conf. on Carbon and Graphite, September 23-27, London (1974).
  5. L. M. Manocha, A. Warrier, S. Manocha, D. Sathiyamoorthy, and S. Banerjee, Thermophysical Properties of Densified Pitch based Carbon/Carbon Materials-I. Unidirectional Composites, Carbon, 44, 480-487 (2006). https://doi.org/10.1016/j.carbon.2005.08.012
  6. H. Li, H. J. Li, J. Lu, X. Zhang, and K. Li, Effects of Air Oxidation on Mesophase Pitch-based Carbon/Carbon Composites, Carbon, 49, 1416-1422 (2011). https://doi.org/10.1016/j.carbon.2010.12.009
  7. A. Benk, Utilisation of the Binders prepared from Coal Tar Pitch and Phenolic Resins for the Production metallurgical Quality Briquettes from Coke Breeze and the Study of their high Temperature Carbonization Behaviour, Fuel Process Technol., 91, 1152-1161 (2010). https://doi.org/10.1016/j.fuproc.2010.03.030
  8. P. D. Matzinos, J. W. Patrick, and A. Walker, The Efficiency and Mechanism of Densification of 2-D C/C Composites by Coal-tar Pitch Impregnation, Carbon, 38, 1123-1128 (2000). https://doi.org/10.1016/S0008-6223(99)00239-0
  9. L. M. Manocha, M. Patel, S. M. Manocha. C. Vix-Guterl, and P. Ehrburger, Carbon/Carbon Composites with Heat-treated Pitches I. Effect of Treatment in Air on the Physical Characteristics of Coal Tar Pitches and the Carbon Matrix derived Thereform, Carbon, 39, 663-671 (2001). https://doi.org/10.1016/S0008-6223(00)00178-0
  10. S. J. Park, M. K. Seo, and J. R. Lee, Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 5. Studies on Anti-oxidtaion Properties of the Composites, Polymer(Korea), 24, 237-244 (2000).
  11. W. Kowbel, V. Chellapa, and J. C. Withers, Properties of C/C Composites Produced in One Low Cost Manufacturing Step, Carbon, 34, 819 (1996). https://doi.org/10.1016/0008-6223(96)89472-3
  12. H. J. Ko, C. U. Park, H. H. Cho, M. J. Yoo, M. S. Kim, and Y. S. Lim, Preparation of Coal Tar Pitch as Carbon Fibers Precursor from Coal Tar, Kor. J. Mater. Res., 23, 276-280 (2013). https://doi.org/10.3740/MRSK.2013.23.5.276
  13. M. Akezuma, K. Okuzawa, K. Esumi, K. Meguro, and H. Honda, Physicochemical Properties of Quinoline-soluble and Quinoline-insoluble Mesophases, Carbon, 25, 517-522 (1987). https://doi.org/10.1016/0008-6223(87)90192-8
  14. K. J. Kim, D. H. Rui, K. H. Lim, J. I. Kim, I. C. Shin, Y. S. Lim, H. J. Joo, and K. Y. Cho, Manufacture of High Density Graphite Using Coal Tar Pitch, J. Kor. Ceram. Soc., 43, 839-845 (2006). https://doi.org/10.4191/KCERS.2006.43.12.839
  15. J. H. Choi, G. D. Lee, J. Y. Kim, and Y. D. Park, Influence of Feedstocks and Carbonization Condition on Pitch Coke Preparation from various Coal Tars, J. Kor. Inst. Chem. Eng., 28, 586-593 (1990).
  16. C. Yamaguchi, J. Mondori, A. Matsumoto, H. Honma, H. Kumagai, and Y. Sanada, Air-blowing Reactions of Pitch : I. Oxidation of Aromatic Hydrocarbons, Carbon, 33, 193-201 (1995). https://doi.org/10.1016/0008-6223(94)00127-L
  17. W. Zhang, T. Li, H. Liu, A. Dang, C. Hou, T. Zhao, and G. Li, Preparation and Carbonization Behavior of Cinnamaldehyde modified Coal Tar Pitch, J. Anal. Appl. Pyrol., 94, 63-67 (2012). https://doi.org/10.1016/j.jaap.2011.11.005
  18. J. Y. Jung, M. S. Park, M. I. Kim, and Y. S. Lee, Novel Reforming of pyrolized Fuel Oil by Electron Beam Radiation for Pitch Production, Carbon Letters, 15, 262-267 (2014). https://doi.org/10.5714/CL.2014.15.4.262
  19. J. R. Kershaw and K. J. T. Black, Structural Characterization of Coal-Tar and Petroleumm Pitches, Energy Fuels, 7, 420-425 (1993). https://doi.org/10.1021/ef00039a014
  20. H. B. Shin, B. H. Lee, S. W. Hong, and B. S. Rhee, A Study on Co-carbonization Behavior of Coal Tar and Petroleum Pitch, Kor. J. Mater. Res., 6, 138-144 (1996).
  21. K. Y. Cho and K. J. Kim, The Oxi-stabilization of Carbon Precursor Using Heat Treated Pitch, J. Kor. Ceram. Soc., 40, 985-990 (2003). https://doi.org/10.4191/KCERS.2003.40.10.985
  22. A. Cristadoro, S. U. Kulkarni, W. A. Burgess, E. G. Cervo, H. J. Rader, K. Mullen, D. A. Bruce, and M. C. Thies, Structural Characterization of the Oligomeric Constituents of Petroleum Pitches, Carbon, 47, 2358-2370 (2009). https://doi.org/10.1016/j.carbon.2009.04.027
  23. Y. Martin, R. Garcia, R. A. Sole, and S. R. Moinelo, Structural Characterization of Coal Tar Pitches Obtained by Heat Treatment under Different Conditions, Energy Fuels, 10, 436-442 (1996). https://doi.org/10.1021/ef950208j
  24. J. S. Hwang, H. I. Ryu, and S. J. Park, Separation of Precusor-Pitch for Carbon Application from petroleum Vacuum Residuum Using Supercritical Propane ($C_3H_8$), J. Kor. Inst. Chem. Eng., 34, 99-104 (1996).
  25. M. C. Kim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch, Kor. Chem. Eng. Res., 43, 745-750 (2005).
  26. S. J. Park, M. S. Cho, and J. R. Lee, Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 1. Degree of Graphitization and Mechanical Behavior, Polymer(Korea), 22, 972-978 (1998).
  27. S. J. Park, M. K. Seo, and J. R. Lee, Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 9. Studies on Impact Properties of the Composites, J. Korean. Soc. Compos. Mater., 16, 41-48 (2003).
  28. I. S. Oh, J. I. Kim, Y. S. Nam, and H. J. Joo, Effects of the Presuure Carbonization on the Preparation Process of Carbon/Carbon Composites from Coal Tar Pitch, Kor. J. Mater. Res., 7, 397-402 (1997).
  29. G. Chollon, O. Siron, J. Takahashi, H. Yamauchi, K. Maeda, and K. Kosaka, Microstructure and Mechanical Properties of Coal Tar Pitch-based 2D-C/C Composites with a Filler Addition, Carbon, 39, 2065-2075 (2001). https://doi.org/10.1016/S0008-6223(01)00021-5
  30. C. R. Choe, J. S. Jang, and B. I. Yoon, Carbonization Process of Carbon Fiber/Phenolic Resin Composites III. Mechanical Properties with Different Cure Pressure, J. Korean Soc. Compos. Mater., 4, 13-22 (1991).
  31. J. I. Kim, I. S. Oh, and H. J. Joo, Mechanical Properties & Ablation Mechanism of SiC Coated Carbon/Carbon Compoistes by Pack-cementation Method, Carbon Science, 2, 27-36 (2001).
  32. S. E. Yoo, M. K. Seo, B. S. Kim, and S. J. Park, Effect of $MoO_3$ on Mechanical Interfacial Behavior and Anti-oxidation of Carbon Fiber-reinforced Composites, J. Ind. Eng. Chem., In Press, Corrected Proof.
  33. E. Casal, M. Granda, J. Bermejo, J. Bonhomme, and R. Menendez, Influence of Porosity on the Apparent Interlaminar Shear Strength of Pitch-bqased unidirectional C-C Composites, Carbon, 39, 73-82 (2001). https://doi.org/10.1016/S0008-6223(00)00085-3
  34. S. J. Park, M. S. Cho, and J. R. Lee, Studies on the Surface Free Energy of Carbon-Carbon Composites : Effect of Filler Addition on the ILSS of Composites, J. Colloid Interface Sci., 226, 60-64 (2000). https://doi.org/10.1006/jcis.2000.6787

Cited by

  1. 석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 vol.28, pp.4, 2015, https://doi.org/10.14478/ace.2017.1035
  2. 저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성 vol.31, pp.6, 2018, https://doi.org/10.7234/composres.2018.31.6.412
  3. 산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향 vol.31, pp.1, 2015, https://doi.org/10.14478/ace.2019.1101
  4. One-Step Densification of Carbon/Carbon Composites Impregnated with Pyrolysis Fuel Oil-Derived Mesophase Binder Pitches vol.6, pp.1, 2020, https://doi.org/10.3390/c6010005
  5. 석유계 피치가 첨가된 고온 탄소복합재용 페놀수지의 열 유변학적 거동 연구 vol.33, pp.6, 2015, https://doi.org/10.7234/composres.2020.33.6.329
  6. 벌크흑연 제조를 위한 결합재로 이용되는 콜타르 핏치 및 페놀수지의 열처리에 의한 결정성 변화 vol.32, pp.2, 2015, https://doi.org/10.14478/ace.2021.1002
  7. Study of the Molecular-Weight Distribution of Binder Pitches for Carbon Blocks vol.6, pp.15, 2021, https://doi.org/10.1021/acsomega.1c00323