DOI QR코드

DOI QR Code

Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water

나노기포 수소수에서 배양한 Arthrospira platensis 특성 확인

  • Seo, Ji-Hye (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University) ;
  • Choi, Soo-Jeong (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University) ;
  • Lee, Sang-Hoon (Division of Functional Food Research, Korea Food Research Institute) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University)
  • 서지혜 (신라대학교 의생명과학대학 제약공학) ;
  • 최수정 (신라대학교 의생명과학대학 제약공학) ;
  • 이상훈 (한국식품연구원 기능성식품연구본부) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학)
  • Received : 2015.03.30
  • Accepted : 2015.05.29
  • Published : 2015.08.10

Abstract

Arthrospira platensis (A. platensis) has been used in various fields including dietary supplements as it contains a high protein content and large amounts of unsaturated fatty acids. In addition, it has some pigments such as phycocyanin, myxoxanthophyll and zeaxanthin and thus has been used as a food additive and antioxidant substance. Nano-bubble hydrogen is to dissolve more than the saturation solubility in water by injecting the hydrogen gas in the nano-bubble hydrogen water. The nano-bubbles are known to possess higher antioxidant properties in addition to anticancer effects. In this paper, Arthrospira platensis was cultured in both a normal medium with distilled water and nano-bubble hydrogen water medium and their properties were compared. The cell growth and the content of chlorophyll and carotenoid in the nano-bubble hydrogen water was 15% higher than that of the control. The level of phycocyanin in nano-bubble hydrogen water was also 7% higher than that of the control. However, there were little differences in the lipid content between the nano-bubble and control. To determine the content of the antioxidants, the level of flavonoid and polyphenol were measured. The level of flavonoid in nano-bubble hydrogen water was found to be more than 70% increased when comparing to that of the control, while the level of polyphenol was similar to each other.

미세조류 Arthrospira platensis는 단백질 함량이 높고, 불포화 지방산 등을 다량함유하고 있어 건강보조식품 및 다양한 분야에서 활용되고 있다. 또한 phycocyanin, myxoxanthophyll, zeaxanthin 등의 색소를 함유하고 있어서 항산화물질, 식품 첨가물로도 이용되고 있다. 나노기포 수소수는 수소 기체를 나노기포 상태로 물속에 주입하여 포화용해도 이상으로 용해시킨 것이다. 이런 나노기포 수소수는 항산화능이 높고, 항암효과가 있는 것으로 알려져 있다. Arthrospira platensis를 일반 증류수 배지와 수소수로 제조한 배지에서 배양한 후 특성을 확인하였다. 배양 결과, 세포 성장 및 광합성으로 인한 색소인 chlorophyll과 carotenoid의 함량은 수소수 배지에서 배양하였을 경우 대조군에 비해 15% 정도 증가한 것으로 나타난다. 그리고 phycocyanin 역시 7% 정도 증가하였다. 하지만, 지질함량은 수소수 배지 배양과 일반 배지 배양 간에 큰 차이가 없는 것을 확인하였다. 항산화물질의 함량을 확인하기 위해 flavonoid 및 polyphenol의 함량을 측정하였다. Flavonoid는 수소수 배지에서 배양하였을 경우 대조군에 비해 70% 이상 증가함을 보이고 있다. 하지만 polyphenol은 대조군과 유사한 함량을 보이고 있다.

Keywords

References

  1. D. S. Joo, K. W. Kim, and S. Y. Cho, Physiological properties of extracts and the chemical composition of Tetraselmis sp. JK-46 cultured with deep seawater, Kor. J. Fish Aquat Sci., 44(1), 1-7 (2011). https://doi.org/10.5657/KFAS.2011.44.1.001
  2. G. D. Gwak, M. S. Kim, and D. H. Kwak, Particle separation characteristics and harvesting efficiency of Spirulina platensis using micro-bubble, J. Korean Soc. Water Wastewater, 27(5), 621-629 (2013). https://doi.org/10.11001/jksww.2013.27.5.621
  3. M. R. Walach, M. J. Bazin, S. J. Pirt, and H. H. M. Balyuzi., Computer control of carbon-nitrogen ratio in Spirulina platensis, Biotechnol Bioeng., 29, 520-528 (1987). https://doi.org/10.1002/bit.260290417
  4. A. Kulshrshtha, Spirulina in health care management, Curr. Pharm. Biotechnol., 9(5), 400-405 (2008). https://doi.org/10.2174/138920108785915111
  5. P. Datla, The Wonder Molecule Called Phycocyanin, Parry Nutraceuticals and Valensa International (2011).
  6. K. Hayashi, T. Hayashi, and I. Kojima, A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities, AIDS Res. Hum. Retroviruses, 12(15), 1463-1471 (1996). https://doi.org/10.1089/aid.1996.12.1463
  7. C.-J. Kim, Y. H. Jung, G. G. Choi, Y. H. Park, Ch. Y. Ahn, and H. M. Oh, Optimization of outdoor cultivation of Spirulina platensis and control of contaminant organisms, Algae, 21(1), 133-139 (2006). https://doi.org/10.4490/ALGAE.2006.21.1.133
  8. S. J. Choi, Y. H. Kim, I. H. Jung, and J. H. Lee, Effect of nano bubble oxygen and hydrogen water on microalgae, Appl. Chem. Eng., 25(3), 324-329 (2014). https://doi.org/10.14478/ace.2014.1038
  9. M. Matsumoto and K. Tanaka, Nano bubble size dependence of surface tension and inside pressure, Fluid Dyn. Res., 40(7-8), 546-553 (2008). https://doi.org/10.1016/j.fluiddyn.2007.12.006
  10. S. Saitoh, K. Takahashi, K. Nabeshima, Y. Yamashita, Y. Nakaseko, A. Hirata, and M. Yanagida, Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase., J. Cell Biol., 134(4), 949-961 (1996). https://doi.org/10.1083/jcb.134.4.949
  11. Y. Bao, M. Liu, X. Wu, W. Cong, and Z. Ning, In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond, Biotechnol. Bioprocess Eng., 17, 93-99 (2012). https://doi.org/10.1007/s12257-011-0319-9
  12. R. Asada, K. Kageyama, H. Tanaka, H. Matsui, M. Kimura, Y. Saitoh, and N. Miwa, Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death, Oncol. Rep., 24, 1463-1470 (2010).
  13. W. Chena, M. Sommerfelda, and Q. Hu, Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol., 102, 135-141 (2011). https://doi.org/10.1016/j.biortech.2010.06.076
  14. Y. H. Kim and J. H. Lee, Isolation of Arthrospira platensis mutants producing high lipid and phycobiliproteins, KSBB, 27, 172-176 (2012). https://doi.org/10.7841/ksbbj.2012.27.3.172
  15. E. Bertozzini, L. Galluzzi, A. Penna, and M. Magnani, Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red, J. Microbiol. Methods, 87, 17-23 (2011). https://doi.org/10.1016/j.mimet.2011.06.018
  16. S. J. Choi, Y. H. Kim, A. Kim, and J. H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition, Appl. Chem. Eng., 24(6), 628-632 (2013). https://doi.org/10.14478/ace.2013.1085
  17. J. R. Malapascua, H. N. Chou, W. J. Lu, and J. C. Lan, Development of an indirect method of microalgal lipid quantification using a lysochrome dye, Nile red, Afr. J. Biotechnol., 11(70), 13518-13527 (2012).
  18. E. D. G. Danesi, C. de O. Rangel-Yagui, J. C. M. de Carvalho, and S. Sato, An investigation of eect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis, Biomass Bioenergy, 23, 261-269 (2002). https://doi.org/10.1016/S0961-9534(02)00054-5
  19. V. B. Bhat and K. M. Madyastha, C-Phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro, Biochem. Biophys. Res. Commun., 275, 20-25 (2000). https://doi.org/10.1006/bbrc.2000.3270
  20. NFRI, Manuals of Quality Chracteristic Analysis for Food Quality Evaluation (2). National Food Research Institute. Skuba. Japan, 61 (1990).
  21. O. Folin and W. Denis., On phosphotungstic-phosphomolybdic compounds as color reagents, J. Biol. Chem., 12, 239-249 (1912).
  22. Y. H. Kim, S. J. Choi, H. J. Park, and J. H. Lee, Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity, J. Ind. Eng. Chem., 20, 1834-1840 (2014). https://doi.org/10.1016/j.jiec.2013.08.039
  23. K. Ying, D. J. Gilmour, Y. Shi, and W. B. Zimmerman, Growth enhancement of Dunaliella salina by microbubble induced airlift loop bioreactor (ALB)-the relation between mass transfer and growth rate, J. Biomater. Nanobiotechnol., 4, 1-9 (2013).
  24. A. Belay, New scientific developments in the health benefits of spirulina (Arthrospira): Phycocyanin and its potential health benefits, Nutr. Res. Pract., 7(3), 165-173 (2004).
  25. Z. Y. Liu, G. C. Wang, and B. C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  26. T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: A review, RENEW SUST. ENERG. REV., 14, 217-232 (2010). https://doi.org/10.1016/j.rser.2009.07.020
  27. S. H. Oh, J. G. Han, N. Y. Kim, J. S. Cho, T. B. Yim, S. Y. Lee, and H. Y. Lee, Cell growth and lipid production from fed-batch cultivation of Chlorella minutissima according to Culture Conditions, KSBB, 24, 377-382 (2009).
  28. K. Goiris, K. Muylaert, D. De Paepe, G. J. E Baart, and L. De Cooman, Detection of flavonoids in microalgae from different evolutionary lineages, J. Phycol., 50, 483-492 (2014). https://doi.org/10.1111/jpy.12180
  29. M. Choudhary, U. K. Jetley, M. A. Khan, S. Zutshi, and T. Fatma., Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5, Ecotoxicol. Environ. Saf., 66, 204-209 (2007). https://doi.org/10.1016/j.ecoenv.2006.02.002
  30. A. Klanchu, T. Vorapreeda, W. Vongsangnak, C. Khannapho, S. Cheevadhanarak, and A. Meechai, System biology and metabolic engineering of Arthrospira cell factories., Comput. Struct. Biotechnol. J., 3, 1-8 (2012).

Cited by

  1. Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases vol.14, pp.8, 2021, https://doi.org/10.3390/ma14081902