DOI QR코드

DOI QR Code

Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers

함산소불화 활성탄소섬유를 이용한 저농도 크롬이온의 흡착 특성

  • Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김민지 (충남대학교 바이오응용화학과) ;
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2015.04.07
  • Accepted : 2015.05.18
  • Published : 2015.08.10

Abstract

In this work, activated carbon fibers (ACFs) were oxyfluorinated and their adsorption ability for the low concentration of hexavalent chromium in an aqueous solution was investigated. The pore structure and surface properties of ACFs were examined by BET and X-ray Photoelectron Spectroscopy (XPS), respectively. Due to the oxyfluorination treatment, the content of (C-O) bond on ACFs surface which influences the adsorption capacity for heavy metal ions increased largely, resulting that $Cr^{6+}$ adsorption equilibrium reached quickly within 10 min. In addition, the maximum removal efficiency at the initial $Cr^{6+}$ concentration of 20 ppm was observed, which is a 100% improvement compared to that of non-treated ACFs. These results suggest that the oxyfluorination of ACFs can be applied as a good surface treatment for the effective adsorption of the low concentration of $Cr^{6+}$.

본 연구에서는 활성탄소섬유(ACFs)에 함산소불화 표면처리를 수행하여 수용액상에 존재하는 저농도 $Cr^{6+}$ 이온의 흡착특성을 조사하였다. ACFs의 기공구조와 표면특성은 BET와 X선 광전자 분광기(XPS)를 통해 각각 확인하였다. ACFs의 함산소불화 처리는 ACFs의 표면에 중금속 흡착 능력에 영향을 미치는 C-O 결합의 비율을 크게 증가시켰으며, 그 결과 $Cr^{6+}$ 흡착이 10 min 이내에 빠르게 평형에 도달할 수 있었다. 또한 초기 $Cr^{6+}$ 농도 20 ppm에서 최대 $Cr^{6+}$ 제거효율은 미처리 ACFs와 비교하여 약 100% 증가하였다. 이러한 결과로부터 ACFs의 함산소불화 반응은 저농도 $Cr^{6+}$의 흡착을 위한 표면처리법으로 응용될 수 있을 것이다.

Keywords

References

  1. Z. Hu, L. Lei, Y. Li, and Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purif. Technol., 31, 13-18 (2003). https://doi.org/10.1016/S1383-5866(02)00149-1
  2. K. Kaya, E. Pehlivan, C. Schmidt, and M. Bahadir, Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions, Food Chem., 158, 112-117 (2014). https://doi.org/10.1016/j.foodchem.2014.02.107
  3. V. Sarin and K. K. Pant, Removal of chromium from industrial waste by using eucalyptus bark, Bioresource Technol., 97, 15-20 (2006). https://doi.org/10.1016/j.biortech.2005.02.010
  4. Y. Qu, X. Zhang, J. Xu, W. Zhang, and Y. Guo, Removal of hexavalent chromium from wastewater using magnetotactic bacteria, Sep. Purif. Technol., 136, 10-17 (2014). https://doi.org/10.1016/j.seppur.2014.07.054
  5. C. Jeon and J. H. Kim, Heavy metal removal using sawdust, J. of KORRA, 15, 81-88 (2007).
  6. H. Y. Lee, K. C. Hong, J. E. Lim, J. H. Joo, J. E. Yang, and Y. S. Ok, Adsorption of Heavy Metal Ions from Aqueous Solution by Chestnut Shell, Kor. J. Environ. Agric., 28, 69-74 (2009). https://doi.org/10.5338/KJEA.2009.28.1.069
  7. N. Talreja, D. Kumar, and N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3, 34-45 (2014). https://doi.org/10.1016/j.jwpe.2014.08.001
  8. T. Motsi, N. A. Rowson, and M. J. H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite, Int. J. Miner. Process., 92, 42-48 (2009). https://doi.org/10.1016/j.minpro.2009.02.005
  9. K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresource Technol., 76, 63-65 (2001). https://doi.org/10.1016/S0960-8524(00)00072-9
  10. M. A. A. Zaini, Y. Amano, and M. Machida, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180, 552-560 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.069
  11. I. J. Yeon, H. S. Shin, T. S. Shin, and K. Y. Kim, Synthesis of activated carbon fiber as adsorbent using cellulose acetate and phenolic resin as carbon source, J. Korea Soc. Waste Manag., 30, 418-427 (2013). https://doi.org/10.9786/kswm.2013.30.5.418
  12. K. C. Kang, S. H. Kwon, S. S. Kim, J. W. Choi, and K. S. Chun, Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers, J. Anal. Sci. Technol., 19, 285-289 (2006).
  13. J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  14. J. S. Im, S. J. Kim, P. H. Kang, and Y. S. Lee, The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, J. Ind. Eng. Chem., 15, 699-702 (2009). https://doi.org/10.1016/j.jiec.2009.09.048
  15. M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of Polymethylmethacrylate (PMMA) film and its surface characterization, Appl. Chem. Eng., 21, 317-322 (2010).
  16. S. J. Gregg and K. S. W. Sing, Adsorption surface area and porosity, Second ed., 195, Academy Press, London (1982).
  17. L. E. Cruz-Barba, S. Manolache, and F. Denes, Novel plasma approach for the synthesis of highly fluorinated thin surface layers, Langmuir, 18, 9393-9400 (2002). https://doi.org/10.1021/la026032c
  18. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluorine Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  19. R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Improvement in the mechanical properties of polyacrylonitrile (PAN)-based carbon fibers after fluorination, Synth. Met., 114, 197-200 (2000). https://doi.org/10.1016/S0379-6779(00)00251-4
  20. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  21. S. J. Park, M. K. Seo, and Y. S. Lee, Surface characteristics of fluorine-modified PAN-based carbon fibers, Carbon, 41, 723-730 (2003). https://doi.org/10.1016/S0008-6223(02)00384-6
  22. C. L. Mangun, K. R. Benak, J. Economy, and K. L. Foster, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon, 39, 1809-1820 (2001). https://doi.org/10.1016/S0008-6223(00)00319-5
  23. M. J. Jung, E. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine Chem., 132, 1127-1133 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.046
  24. M. J. Jung, J. W. Kim, J. S. Im, S. J. Park, and Y. S. Lee, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410-414 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  25. J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000). https://doi.org/10.1023/A:1004791313979
  26. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A. Tressaud, and E. Durand, Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries, J. Power Sources, 104, 108-114 (2002). https://doi.org/10.1016/S0378-7753(01)00895-3
  27. D. Y. Kim, S. J. In, and Y. S. Lee, Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate), Polymer(Korea), 37, 316-322 (2013).
  28. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the Fluorination of Activated Carbons on the Chromium Ion Adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  29. C. Jeon and S. S. Choi, A study on heavy metal removal using alginic acid. J. of KORRA, 15, 107-114 (2007).
  30. A. K. Meena, G. K. Mishra, P. K. Rai, C. Rajagopal, and P. N. Nagar, Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Hazard. Mater., B122, 161-170 (2005).
  31. L. Zhang and Y. Zhang, Adsorption characteristics of hexavalent chromium on HCB/TiO2, Appl. Surf. Sci., 316, 649-656 (2014). https://doi.org/10.1016/j.apsusc.2014.08.045
  32. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibres, J. Fluorine Chem., 84, 127-134 (1997). https://doi.org/10.1016/S0022-1139(97)00029-8
  33. H. S. Ju, S. I. Lee, Y. S. Lee, and H. G. Ahn, Surface modification of activated carbon by acid treatment and adsorption property of heavy metals, Appl. Chem., 4, 173-176 (2000).

Cited by

  1. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017, https://doi.org/10.14478/ace.2016.1111
  2. 고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리 vol.28, pp.6, 2015, https://doi.org/10.14478/ace.2017.1079
  3. 새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향 vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1007
  4. 활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성 vol.30, pp.2, 2019, https://doi.org/10.14478/ace.2018.1122
  5. 활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향 vol.30, pp.6, 2019, https://doi.org/10.14478/ace.2019.1082
  6. 활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성 vol.21, pp.2, 2015, https://doi.org/10.17702/jai.2020.21.2.51
  7. 플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1098